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Quantum computing industry is booming!




Superconducting qubits

The recent progress has been made mainly thanks to the
technology of manufacturing superconducting qubits.
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Quantum computers are becoming accessible

You can program quantum computer this evening...

Visit www.quantumexperience.ng.bluemix.net
and get access to the IMB Q 5-qubit quantum computer.

IBM Q 5 Tenerife [ibmax4]

Last Calibration: 2018-09-19 11:59:26

MultiQubit gate error



http://www.quantumexperience.ng.bluemix.net

Let’s create the Bell state...
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Why it can better than using classical
supercomputers!?

For a sigle qubit dlm(H) = 2

Dimension of the Hilbert space for N qubits grows exponentially with N:
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With the present most powerful classical supercomputers you can
simulate quantum systems with N=56 at most.

IBM and Rigetti Computing are developing quantum chips with N>100
and certain topologies of couplings between the qubits > quantum supremacy

Quantum parallelism > reduction of computational complexity of some classical problems
(Deutsch, Grover, Shor, ... ) > quantum speed-up



Quantum computers will allow to perform exact
simulations of quantum systems with large N

In particular, we may think about simulating Planck scale physics...

Original system at Exact simulation
the Planck scale (e.g. using superconducting
circuits)
Projection
—p

Quantum structure
of the system
is preserved

Degrees of freedom are
experimentally inaccessible

Degrees of freedom are
experimentally accessible

But, can we express QG DOF with qubits?



Loop Quantum Gravity

Holonomies of Ashtekar connection A € SU(Q) along some curve €

[h[A, e] = Pele Aj /)\:1

Under the gauge transformations >
—1 —1
A — Ag = q dg + g Ag /

A=10

h[A,e] — h[Ag, €] = g(e(0))h[A, e]g(e(1)) ™

Gauge invariant objects > Wilson loops
WA €] = tr (hlA.e]) )
The key idea behind LQG is to built a Hilbert space of the theory out of the
Wilson loops. However, such basis is in general over-complete and the

solution comes with the constructions of spin networks which are
certain linear combination of products of the Wilson loops.




Spin Networks

Graph: | = {links (l), nodes (n)}

W Spin network state: ‘\If> — ‘ijly Zn> — ®n‘7ﬂn>

jl - spin labels in - intertwiners

b}
»Quantum of space Gauss constraint:

><” ] A{ (E' + E* + E° + EY)|in) = 0
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Qubit

We consider spin networks composed of 4-valent vertices and spin
labels corresponding to fundamental representations of the SU(2) group
i.e.j=1/2.The Hilbert space at each vertex is:

Hipp®@Hyip® Hy/9 @ Hyjo=Hy® Ho®3H1 ® Ho
———

such that the invariant subspace is two dimensional:
dlm IHV(Hl/Q @ H1/2 @ H1/2 @ H1/2) — 2
We associate the two dimensional invariant space with the qubit space:
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Qubit base states

s-channel basis:
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Eigenbasis of the volume operator V:
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V1) = +V5|1)  V[0) = =Vp[0)  where Vo= —1p



Transition amplitude

In both classical and quantum gravity physical states (physical solutions) are obtained
by solving the constraints. The physical states belong to the kernel of the constraints:

CW) =0]

such that |V) € Hpnys C Heiin

Therefore, transition amplitude between some boundary states is
/ I T
Wiz, ") = (2’| Plz)

where the projection operator

. A | Y A
P=4(C)= lim —/ dre'™

T — 00 2T T



Spin Foams

boundary graph (a) (b)
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Rovelli & Vidotto, 2015 Keren Li, et al.,arXiv: 1712.0871 |



Vertex amplitude

»yQuantum of spacetime”
- boundary state of a single vertex

. 5
1 .
! Spin network state: W) = ® in)
n=1
10
Representation: "I’2> — ® ’€l>
(=1

€)= iz (119 = 11) (Bell state)

Vertex amplitude: C{\IJ2]\111> = A(t1,19,13, 4, i5D

Can be computed with the use of quantum computer (in progress).

see: Keren Li, et al.,arXiv: 1712.0871 | But, we have to identify the states which
satisfy the constraint C' =~ 0 first...
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How to compute ‘ <\112 ‘\Ifl> ‘2 on quantum computer?

The initial state for quantum algorithm: |O> — | T> 9 ‘ T>

N—— ————’
4N

For N nodes of the spin network we need 4N qubits (20 qubits for the vertex amplitude).

The Hilbert space is spanned by 24N base states ‘1> where 7 € {O, 24N — 1}

We have to find ﬁland U2such that: |\Ill> — ﬁ1‘0> and ‘\112> — U2|O>

Our quantum algorithm is defined by — X
the unitary operator (quantum circuit): |O> | U= UQT Uy : /M7§
U = []2Jr U1 such that

AN, We measure: P(O) — |a0‘2

U|O> — Z ai|2> where aqg = <O‘U‘O> — <\112‘\Ijl>

k 1=0

~

J




Solving the constraint with the
Adiabatic Quantum Computer

The adiabatic quantum computers are designed to solve a specific
problem of finding minimum of a Hamiltonian H rof a coupled system
of qubits (spins). In the process of finding the minimum of /{; one
employs a time dependent Hamiltonian in the form:

HO) = (1— NHg+ AH

A=0

time
where /1 B is the so-called base Hamiltonian characterized by a simple

and easy to prepare ground state. In practice, the base Hamiltonian is
often equal

HB :ZO';B
1

such that the ground state corresponds to the alignment of spins in the x
direction.Then, the value of A is changed adiabatically from )\ = ()

to A = 1, such that while the system is initially in non-degenerate ground
state it will remind in the ground state during the process.



Let us observe that, the problem finding solution to the constraint:
C =0

can be mapped into the problem of finding minimum of the Hamiltonian:

H[O(CQ

In such case the Hamiltonian is bounded from below and at the ground state
the constrain is satisfied.

In physical implementations the most considered form of the base
Hamiltonian corresponds to the Ising problem:

Z bijo;o; + Zh o;

<1,7>

bf,;j and }y; are couplers. NP-hard problem in general.



Spin networks on adiabatic quantum computer, |M, arXiv:1801.06017

Cryogenic system

Adiabatic quantum computer /
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Spin networks \
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Chimera graph
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Elementary 8-qubit block of the quantum chip.

D-Wave 2000 - a matrix 16x16=256 of 8-qubit blocks (2048 qubits in total).



Regular lattice spin network




Pentagram spin network

//\\ Physical implementation of the spin network:

S; € {—1,1}
N =5

Prototype constraint: C = E s; —c~ 0
1=1

_ 5 — Z 3233—|—h252 where h = —¢




Energy landscape
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Outlook

Evaluation of the vertex amplitudes
utilizing quantum algorithms.

A lot can be done using available
simulators of quantum computers.

More general spin networks.

New architectures to be explored.
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Application to spin foam cosmology.
Analysis of quantum states of BH horizons.
Extraction of physical states adopting
Quantum Phase Estimation Algorithm

to the projection operator.

Simulating gravity using gauge/gravity duality.

Simulations of mesoscopic Planck scale systems

on adiabatic quantum computers.

nature

August 2018

Science

July 2018

quantum spin glass simulatof | a programmable lattice of 1,800 quibits

| Phase tranSItlons ina programmable Observatlon of topological phenomena in
Andrew D. King et. al Nature 56007719

R.Harris et. al Science Vol. 361, Issue 6398)pp-162-165 I




