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Scalar-tensor theories in the Palatini approach

Palatini approach: metric tensor and linear connection
independent of each other

Scalar-tensor theories: scalar field non-minimally coupled to
curvature
Why to combine these two approaches?

introduction of new class of theories, reducing to metric S-T in
some cases;

possible cosmological application, e.g. analysis of inflation
(Racioppi 2017, Rasanen and Wahlman 2017);

no comprehensive study and general formalism developed so
far.
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Action functional

The action functional we postulate is the following:

S[gµν , Γ
α
µν ,Φ] =

1

2κ2

∫
Ω
dnx
√
−g
[
A(Φ)R(g, Γ)

− B(Φ)gµν∇µΦ∇νΦ− Aµ1 (g, Γ)C1(Φ)∇µΦ

− Aµ2 (g, Γ)C2(Φ)∇µΦ− V(Φ)
]

+ Smatter[e
2α(Φ)gµν , χ],

(1)

where:

Aµ1 (g, Γ) = gµνgαβ∇νgαβ = gµνgαβQναβ , (2a)

Aµ2 (g, Γ) = −gµνgαβ∇αgνβ = −gµνgαβQανβ . (2b)
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Transformation group and self-consitency conditions

Causal and a�ne structure decoupled → metric tensor and a�ne
connection transform independently under conformal
change

We introduce the following transformations:

ḡµν = e2γ1(Φ)gµν , (3a)

Γ̄α
µν = Γα

µν + 2δα(µ∂ν)γ2(Φ)− gµνgαβ∂βγ3(Φ), (3b)

Φ̄ = f (Φ) (3c)

γ3 = 0→ geodesic transformation

γ2 = γ3 → Weyl transformation
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Transformation group and self-consitency conditions

The condition of form-invariance of the action leads to the following
transformation equations for the six independent scalar field
functions:

Ā(Φ̄) = e(n−2)γ̌1(Φ̄)A(f̌ (Φ̄)), (4a)

B̄(Φ̄) = e(n−2)γ̌1(Φ̄)
[
B(f̌ (Φ̄))(f̌ ′(Φ̄))2 + (n− 1)

(
nA(f̌ (Φ̄))γ̌′2 (Φ̄)γ̌′3 (Φ̄)−A(f̌ (Φ̄))

(
γ̌
′
2 (Φ̄)

)2
−A(f̌ (Φ̄))

(
γ̌
′
3 (Φ̄)

)2
−

dA(f̌ (Φ̄))

dΦ̄
(γ̌′2 (Φ̄) + γ̌

′
3 (Φ̄))

− (n− 2)A(f̌ (Φ̄))γ̌′1 (Φ̄)(γ̌′2 (Φ̄) + γ̌
′
3 (Φ̄))

)
+ f̌ ′(Φ̄)

(
C1(f̌ (Φ̄))((n− 2)nγ̌′1 (Φ̄)− 2(n + 1)γ̌′2 (Φ̄) + 2γ̌′3 (Φ̄))

− C2(f̌ (Φ̄))((n− 2)γ̌′1 (Φ̄)− (n + 3)γ̌′2 (Φ̄) + (n + 1)γ̌′3 (Φ̄))
)]
,

(4b)

C̄1(Φ̄) = e(n−2)γ̌1(Φ̄)
[
f̌ ′(Φ̄)C1(f̌ (Φ̄))−A(f̌ (Φ̄))

(
n− 1

2
γ̌
′
2 (Φ̄) +

n− 3

2
γ̌
′
3 (Φ̄)

) ]
, (4c)

C̄2(Φ̄) = e(n−2)γ̌1(Φ̄)
[
f̌ ′(Φ̄)C2(f̌ (Φ̄))−A(f̌ (Φ̄))

(
(n− 1)γ̌′2 (Φ̄)− γ̌′3 (Φ̄)

) ]
, (4d)

V̄(Φ̄) = enγ̌1(Φ̄)V(f̌ (Φ̄)), (4e)

ᾱ(Φ̄) = α(f̌ (Φ̄)) + γ̌1(Φ̄). (4f)
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Transformation group and self-consitency conditions

Transformations: A→ B with (γi , f ) and B→ C with (γ̄i , f̄ )

Composition: A→ C with (¯̄γi ,
¯̄f ), where

(¯̄γi ,
¯̄f ) = (γ̄i + γi ◦ f̄ −1, f̄ ◦ f )

Consistent action of full group is only possible in the physical dimension
n = 4.

In other dimensions - group reduced to two di�erent subgroups:
a)γ1 = 0 with arbitrary γ2, γ3; contains Weyl transformations (γ2 = γ3) and
the projective transformations (γ3 = 0) of the connection;
b)γ2 + γ3 = const with arbitrary conformal transformation of the metric
tensor.
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Invariant quantities

Invariants are quantities built from the functions {A,B, C1, C2,V, α}
such that their functional dependence on them is the same in
every frame; also, their value at a given spacetime point
remains unchanged.

Integral invariant:

InE (Φ) =

∫ (
±
A(Φ)B(Φ) +A′(Φ)[C2(Φ)− nC1(Φ)]

A(Φ)2
±

(n2 − 5)C2(Φ)2 − 4C1(Φ)2 + 2(4 + n− n2)C1(Φ)C2(Φ)
)

(n− 2)(n− 1)A(Φ)2

) 1
2
dΦ

(5)

InE invariant i�:

1 n = 4;

2 γ′2 + γ′3 = 0;

3 γ1(Φ) = 1
n−2 ln(A(Φ).
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Einstein frame in the Palatini scalar-tensor theories

Definition

The Einstein frame in the Palatini theory is characterized by
specific values of four out of six arbitrary functions {A, . . . , α}:
A = 1, B = εPalatini, C1 = C2 = 0.
The action functional is given by:

S[gEµν , (ΓE)αµν ,Φ] =
1

2κ2

∫
Ω d

nx
√
−gE

(
R(gE , ΓE)− εPalatini(gE)µν∇µΦ∇νΦ− V(Φ)

)
+Smatter

[
e2α(Φ)gEµν , χ

]
,

where εPalatini ≡ (±1, 0) is a three valued function.

8 / 12



Einstein frame in the Palatini scalar-tensor theories

Theory written in the Einstein frame becomes e�ectively metric.

In four dimensions, all transformations preserve the group structure.
If n 6= 4, an arbitrary theory may possess an equivalent Einstein frame
representation if either Ā = 1 or C̄2 = nC̄1

The quantity InE is invariant for all frames relatable to the
Einstein frame.
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Scalar-tensor extension of Palatini F (R̂)-gravity

Consider the action of minimally coupled F (R̂)-gravity

SF (gµν , Γ
α
µν) =

1

2κ2

∫
Ω

dnx
√
−gF (R̂) + Smatter(gµν , χ) (6)

In the scalar-tensor representation:

S(gµν , Γ
α
µν ,Φ) =

1

2κ2

∫
Ω

dnx
√
−g
(
ΦR̂ − UF (Φ)

)
+ Smatter(gµν , χ) (7)

where: UF (Φ) ≡ R̂(Φ)Φ− F (R̂(Φ)) and Φ = dF
dR̂

It can be written in the Einstein frame by setting: gEµν = Φ
2

n−2 gµν

SEP(gEµν , Γ
α
µν ,Φ) =

1

2κ2

∫
Ω

dnx
√
−gE

(
R̂ − ŪF (Φ)

)
+ Smatter(Φ−

2
n−2 gEµν , χ)

(8)
with ŪF = UF

Φ
n

n−2
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with ŪF = UF

Φ
n

n−2

10 / 12



Scalar-tensor extension of Palatini F (R̂)-gravity
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R̂ − ŪF (Φ)
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(9)

Palatini F (R̂)-gravity ≡ Einstein frame with εPalatini = 0

In order to find out whether a given S-T theory in the Palatini approach
arises from some F (R̂), one needs to check if it is equivalent to (9).

This occurs when the following conditions are satisfied:

Ā = 1 or C̄2 = nC̄1;

InE = 0
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Conclusions

1 in case of the Palatini approach, one must transform the metric
and the connection independently

→ one needs to add special
terms linear in scalar field derivatives to the action functional;

2 invariants retain their properties only for frames located on the
same orbit;

3 Einstein frame, with A = 1 and C1 = C2 = 0, is fully analogous
to the metric frames;

4 Palatini S-T theores are the minimal extension of the Palatini
F (R̂)-gravity; an arbitrary S-T theory is equivalent to some F (R̂)
theory if the coe�cients {A,B, C1, C2,V, α} satisfy well-defined
conditions.
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