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BH thermodynamics

• Bekenstein* suggested that BHs have entropy

• Spectacularly confirmed by Hawking** BH 
radiate at temperature
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* Phys. Rev. D7, 2333 (1973); ** Nature 248, 30 (1974): 



Puzzles of BH thermodynamics

• To date at least two major issues remain 
puzzling:
➢ The enigmatic nature of degrees of freedom 

that BH entropy is counting;
➢ The fate of unitarity in BH quantum 

evaporation: do BHs evolve pure states into 
mixed states?



Puzzles of BH thermodynamics

• To date at least two major issues remain 
puzzling:
➢ The enigmatic nature of the degrees of 

freedom that BH entropy is counting;
➢ The fate of unitarity in BH quantum 

evaporation: do BHs evolve pure states into 
mixed states?

Crucial to the BH thermodynamics puzzles 
is the quantum temperature perceived by 

accelerated observer, but not by inertial one.



Horizon temperature

• Unruh* motivated by Hawking discovery that 
black holes radiate thermally at TH,  associates  
temperature to the Rindler horizon

* Phys. Rev. D 14, 870 (1976), 2003))

2
U

a
T






Horizon temperature

• Unruh* motivated by Hawking discovery that 
black holes radiate thermally at TH,  associates  
temperature to the Rindler horizon

• What is the universal, basic structure behind 
Unruh temperature?

* Phys. Rev. D 14, 870 (1976), 2003))
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• In this talk I will describe connection between 
the geometric notion of a null boundary and 
thermal quantum states in the setup stripped 
down to the bone.

• Minimal setting: only group theoretic 
ingredients associated with symmetries of 
space-time

➢ No space-time
➢ No metric
➢ No quantum fields (almost)



Null surface
• Consider a generic null surface (codimension 1) 

in Minkowski space in t-x plane. This surface is 
the basic ingredient of Unruh effect setup.



Poincaré-Weyl algebra
• Take a subalgebra of Poincaré-Weyl algebra 

associated with the surface, consisting of 
translation operators Pt and Px , boost N and 
dilation D
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ax+b algebra
• We can form light-cone generators

• Which satisfy a simple algebra (actually, 
simplest nontrivial)

• Unruh effect can be directly derived from 
representation theory of this algebra.
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ax+b group
• … is a group of transformations g=(a,b)

• consisting of two transformations, 
translations and dilations

• with representation on a Hilbert space 
(positive energy states) 
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Fourier transform
• For “functions on momentum space” 

• One can take Fourier transform to get the 
position space picture
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P-momenta vs. R-momenta

• So far we discussed the representation in 
which P was diagonal. Let us now take 
another representation, in which R is diagonal.
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ω-representation

• The “field” is now

• And can be rewritten as
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k- vs. ω-representation

• ψ(x) is the same function in k- and ω-
representation, so that

• From which we can read-off the 
Bogolyubov coefficients.
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Quantum (field) theory

• We upgrade the functions a and b to 
quantum operators:

• And then we find that
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Back to physics
• We obtained thermal spectrum comparing 

ax+b algebra 

• in two bases: in one P and in another R was 
the translation (acted diagonally on momenta).

• But then there is something wrong with 
dimensions, R is dimensionless while it should 
have the dimension of momentum. We have to 
rescale

• where a has dimension of inverse length. But 
then what is a?
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Accelerated observers
• Accelerated worldline is the Lorentz orbit 

of the vector (0; 1/a)

• Lorentz transformations move points 
along the orbit of constant acceleration; 
but what is the transformation that 
changes the acceleration?

• It is the dilation that does the job.
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Rindler space

• We define the Rindler coordinates with 
the help of the boost and dilation 
parameters.
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Poincaré-Weyl algebra
• We have two translation operators Pt

and Px generating translation in 
Minkowski space;

• We have two translation operators aN
and aD generating translation in Rindler
space.
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k- vs. ω-representation

• So when we compare k and ω bases 
we are comparing theories as seen 
by Minkowski and Rindler observers.

• The thermal distribution we found is 
the number of quanta Rindler
observer sees in Minkowski vacuum.



Unruh effect

• Then the thermal spectrum becomes

• which is thermal distribution at temperature 
T=2ϖ/a, Unruh temperature, physically 
interpreted as the temperature of the thermal 
bath the accelerating observer is immersed in.
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Big picture

• The Unruh effect is just a particular 
example of the construction based on 
representations of ax+b group.

• There might be (should be) other 
instances where representation 
theory of ax+b group might be of 
use.



Open problems

• Deformations are thought to capture 
some quantum gravity effects. Thus 
it will be of interest to consider 
representations of quantum 
deformed ax+b

• Better understanding of Jacobson’s 
Einstein equations as equations of 
state. 

• And so on …


