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Quantum 
Gravity???

Classical Riem. 
Geom. 

Quantum Riemannian
 geometry (NCRG)

This is not surjective, not every classical geometry is `quantisable’!
 (… Einstein’s equation etc some kind of quantisability constraint?)

Quantum spacetime hypothesis:  

quantises functions quantises diff. calc.

(A,⌦, d, g,r, ...)
QLC

O(�Planck)

�Planck ! 0



Ω
1 a((db)c)=(a(db))c `bimodule’

d : A → Ω
1 d(ab)=(da)b+a(db) `Leibniz rule’

space of 1-forms, e.g. `differentials’

1. Quantum differentials on an algebra A

require this to extend to a DGA Ω = TAΩ
1/I = ⊕nΩ

n, d
2

= 0

`surjectivity’{
∑

adb} = Ω
1

ker d = k.1 (`connected’)

Classically, C1(M) = ⌦0(M) ⇢ ⌦(M) = �i⌦
i(M)

⌦1
df =

X

i

@f

@xi
dxi

fdg = (dg)f 2 ⌦1

^ : ⌦⌦A ⌦ ! ⌦, d(! ^ ⌘) = (d!) ^ ⌘ + (�1)|!|! ^ d⌘

! ^ ⌘ = (�1)|!||⌘|⌘ ^ !, d2 = 0

algebra A over    we drop the (graded) commutativity, just keep:k

`graded Leibniz rule’

inner if exists ✓ 2 ⌦1, d = [✓, }



Thm 
bicovariant

Ω1(U(g)) ↔ Z1(g,Λ1)

surjective 
pre-Lie algebra  

◦ : g⊗ g → g [x, y] = x ◦ y − y ◦ x

6 SHAHN MAJID & WEN-QING TAO

Next we recall that a left pre-Lie algebra (also called Vinberg algebra) is defined
to be a vector space V equipped with a necessarily associative ‘product’ map ⇤ :
V ⇥ V ⇧ V s.t.

(4.4) (x ⇤ y) ⇤ z � (y ⇤ x) ⇤ z = x ⇤ (y ⇤ z)� y ⇤ (x ⇤ z).

In this case, V is necessarily a Lie algebra with Lie bracket given by

(4.5) [x, y]V := x ⇤ y � y ⇤ x

for all x, y ⌃ V , where the Jacobi identity holds due to (4.4.

Corollary 4.2. A connected and simply connected Poisson-Lie group G with Lie
algebra g admits a compatible left-invariant flat preconnection if and only if g�

admits a pre-Lie structure via �. This is bicovariant i� � obeys (3.3).

Proof. This is shown by (2.6) and (4.3) and is an interpretation of the preceding
Theorem 4.1. �

Note the first part does not seem to depend on the Lie algebra structure of g itself
*** seems remarkable, should check ***

Example 4.3. Let m be a finite-dimensional Lie algebra and G = m� be an abelian
Poisson-Lie group with its Kirillov-Kostant Poisson-Lie group structure {x, y} =
[x, y] for all x, y ⌃ m ⌅ C⇥(m�) or S(m) in an algebraic context. By Corollary 4.2,
this admits a compatible left-invariant flat preconnection i⇥ m admits a pre-Lie
algebra structure. Here � = ⇤ and

�x̂dy = d(x ⇤ y), ⌥x, y ⌃ m.

In fact the algebra and calculus in this example works to all orders. Thus the
quantisation of m� is U(m) regarded as a noncommutative coordinate algebra with
relations xy � yx = ⇥[x, y]. If m has an underlying pre-Lie algebra then the above
results lead to relations

[x, dy] = ⇥d(x ⇤ y), ⌥x, y ⌃ m

and one can check that this works exactly and not only to order ⇥ precisely as a con-
sequence of the pre-Lie algebra axiom. Indeed, according to [our paper] bicovariant
calculi on U(m) with left-invariant 1-forms m are classified by invertible 1-cocycles
in Z(m,m) and it is known ***reference needed*** that the latter correspond to
pre-Lie algebra structures for m.

Example 4.4. Let g be a quasi-triangular bialgebra with r-matrix r = r(1)⇥r(2) ⌃
g⇥ g. Then g acts on its dual g� by coadjoint action ad� and by Lemma 3.8 in [18]
g� becomes a left g-crossed module with �(⇤,⌅) = �⌦⇤, r(2)↵adr(1)⌅. To satisfy
compatibility (2.6), (g, r) is required to obey r+⇧x = 0 for any x ⌃ g, where
r+ = (r + r21)/2 is the symmetric part of r. In this case g� has a pre-Lie algebra
structure with �(⇤,⌅) = �⌦⇤, r(2)↵ad�r(1)⌅ by Corollary 4.2. We see in particular
that every finite-dimensional cotriangular Lie bialgebra is canonically a pre-Lie
algebra.

e.g. 

dx = 1⊗ ζ(x), Ω1 = U(g)⊗Λ1

⇒ Ω(U(g))

ζ ∈

by skew-symmetrisation of products of ⇤1

Nice problem: take your favourite algebra and classify all 
differential structures (perhaps with some symmetry)

[x, dy] = d(x � y)

Example                         (bicrossproduct model/`kappa’ Mink)g :

Example                          and torsion free flat connection g = Vect(M)

x � y = rxy, r[x,y]z = rxryz �ryrxz

⇤1 ={dy | y 2 g} ⇠= g

[x, y] = rxy �ryxA = U(di↵(M))

bicovariant connected classical dim
↔

w/ Tao Pac. J. Math (2016) 

[xi, t] = �xi



Example                                               comm associative algebra g = V, [ , ] = 0, (V, �)

e.g. V = C1(M) A = Cpoly(V ) [f, dg] = d(fg)

e.g. V = C.x, x � x = �x, A = C[x], [x, dx] = �dx

=>  df(x) =
f(x)� f(x� �x)

�
dx

dx2 = (dx)x+ xdx = 2xdx� �dx = (2x� �)dx

Propn       discrete set                           directed graphs on                    ⌦1(C(X))X ↔ X

df =
X

x!y

(f(y)� f(x))!x!yf.!x!y = f(x)!x!y,!x!y.f = f(y)!x!y

⌦1 = spank{!x!y}

g =
X

x!y

gx!y!x!y ⌦C(X) !y!x gx!y 2 k `metric lengths’

If a graph is bidirected, define



g ∈ Ω
1
⊗
A

Ω
1

( , ) : Ω1
⊗
A

Ω1
→ A

need this to be able to contract/ `raise/lower’ via metric, eg to have 
well defined contraction:

∧(g) = 0 `quantum symmetric’

invertible in the sense exists inverse:              

Ω
1
⊗
A

Ω
1
⊗
A

Ω
1
→ Ω

1
Tµνρ !→ gµνTµνρ

“                               “

a(ω, η) = (aω, η), (ω, η)a = (ω, ηa) `bimodule map (tensorial)’

( , )⊗ id :

(( , )⊗ id)(ω⊗ g) = ω = (id⊗( , ))(g⊗ω), ∀ω ∈ Ω1

but

(ω, g
1)g2

a = ωa = (ωa, g
1)g2 = (ω, ag

1)g2

g = g
1
⊗
A

g
2

(ω, g
1)g2 = ω

⇒

⇒ ag = ga, ∀a ∈ A  need metric to be central

Quantum metrics g = gµ⌫dx
µ ⌦A dx⌫



 Connections and curvature

such connections extend to tensor products

∇(fω) = df ⊗ω + f∇ω

∇(ω⊗ η) = ∇ω⊗ η + (σ⊗ id)(ω⊗∇η)

σ : Ω
1
⊗
A

Ω
1
→ Ω

1
⊗
A

Ω
1

bimodule connection:

∇(ωf) = σ(ω⊗df) + (∇ω)f

(Michor, Dubois-Violette, …)

∇ : Ω
1 → Ω

1 ⊗
A

Ω
1

ω⊗ η ∈ Ω
1
⊗
A

Ω
1

more generally rE : E ! ⌦1 ⌦A E, �E : E ⌦A ⌦1 ! ⌦1 ⌦A E

AEA = {(E,rE ,�E)} is a monoidal category by ⌦A

Classically, a connection assigns a covariant derivative  

Similarly for any differential algebra (A,⌦1, d)

(Quillen, Karoubi,…)

rdxµ = ��µ
⌫⇢dx

⌫ ⌦A dx⇢ (Christoffel symbols)



T∇ = ∧∇− dT∇ : Ω
1
→ Ω

2

∇g = 0`metric compatible’ now makes sense                 but is quadratic

torsion free also makes sense

quantum Levi-Civita connection (QLC)

R∇ = (d⊗
A

id − (∧⊗
A

id)(id⊗
A

∇))∇R∇ : Ω
1
→ Ω

2
⊗
A

Ω
1

Curvature

Lemma:   (1st Bianchi identity)

^(Rr) = d � Tr � (^ ⌦ id)(id⌦ Tr)r

Tr = rg = 0

Laplacian � : A ! A, � = ( , )rd

*-compatibility in *-algebra case

[d, ⇤] = 0, g† = g, � †r⇤ = r; † = flip(⇤ ⌦ ⇤)



[f, g] = 0,∀f => 

3

strongly tensorial’) with respect to multiplication by co-
ordinates in the sense[1],

f(⌥, ⇧) = (f⌥, ⇧), (⌥f, ⇧) = (⌥, f⇧), (⌥, ⇧f) = (⌥, ⇧)f

for all elements f of the quantum coordinate algebra and
all 1-forms ⌥, ⇧. It is shown in [1] that this requires g
to commute with elements of the quantum coordinate
algebra. We also require that g is ‘quantum symmetric’
in the sense ⌃(g) = 0. The quantum wedge product here
is an extension of the 1-forms to an associative product on
forms of all degree and to which d extends. Here the basic
one forms dxi, dt obey the usual exterior or Grassmann
algebra (they anticommute). Finally, we need a condition
that expresses reality of the metric coe⇤cients, which we
express as [1, 12]

(⇥ ⇤1 ⇥)flip(g) = g (4)

where ‘flip’ swaps the factors of ⇤1. We will in practice
omit the subscript on the tensor product as this should
be clear from context.

A. Quantum metrics for the �-calculus

For the � family (2) we consider a quantum metric of the
arbitrary form

g =
3�

i,j

aijdx
i⇤dxj+

3�

i

bi(dx
i⇤dt+dt⇤dxi)+cdt⇤dt,

where the coe⇤cients aij , bi, c are all elements in the
quantum spacetime algebra and obey aij = aji. This
form is dictated by ‘quantum symmetry’ in the form
⌃(g) = 0. Using the Leibniz rule and the relation (2)
we have

[g, t] =
3�

i,j

([aij , t] + 2⌃aij)dx
i ⇤ dxj

+
3�

i

([bi, t]� ⌃(�� 1)bi)(dx
i ⇤ dt+ dt⇤ dxi)

+([c, t]� 2⌃�c)dt⇤ dt.

[g, xk] =
3�

i,j

[aij , x
k]dxi ⇤ dxj +

3�

i

[bi, x
k](dxi ⇤ dt

+dt⇤ dxi) + [c, xk]dt⇤ dt.

This means that g central amounts to

[aij , t] = �2⌃aij , ⇧i, j, [bi, t] = ⌃(�� 1)bi, ⇧i,

[c, t] = 2⌃�c, [aij , x
k] = 0, ⇧i, j, k,

[bi, x
k] = 0, ⇧i, k, [c, xk] = 0, ⇧k.

By solving this, we see that our requirements are that
aij , bi, c are all functions only of x, and aij , bi, c are func-
tions in x1, x2, x3 of degree �2,� � 1, 2� respectively.
Hence there is a larger moduli of metrics for this dif-
ferential calculus; we just have to make sure that the
coe⇤cients are homogeneous of the appropriate degree.

If we look among spherically symmetric quantum met-
rics, which seems natural from the form of the algebra
(1), then we have

g = ⌅�1r�2
�

i

⌥i ⇤ ⌥i + ar�2dr ⇤ dr

+br��1(dr ⇤ dt+ dt⇤ dr) + cr2�dt⇤ dt (5)

for ⌅, a, b, c ⌅ R, which by the above is central. Here
⌅ > 0 could be normalised to ⌅ = 1 but we have refrained
from this as it is dimensionful with dimensions of inverse
square length. The quantum metric is quantum sym-
metric and obeys the ‘reality’ condition (4) given that r
commutes with dxi, dt in this calculus.

B. Quantum metrics for the ⇥-calculus

The ⇥ family (3) contains the standard calculus at ⇥ = 1
and we find basically the same result as for that in [1].
We will omit the details and the proof as the methods
are the same but the result is: For the ⇥ family calculi
in dimension n > 2 there are no central quantum metrics
among a reasonable class of coe�cient functions.

One can, however, consider metrics that are spherically
symmetric and commute with functions of r, t. To do this
let us first note that the elements

u = r⇥�1dr, v = r⇥�1(rdt� ⇥tdr), r⇥�1⌥i

commute with r, t. Also

u⇥ = u, v⇥ = ⌃⇥(⇥ � 2)u+ v, ⌥⇥
i = ⌥i

using the commutation relations. Looking in the 2D r�t
sector, the element

g2D = v⇥⇤v+⇥⌃(u⇤v�v⇥⇤u)�⇤1(u⇤v+v⇥⇤u)+⇤2u⇤u

then manifestly commutes with t, r and is ‘real’ in the
hermitian sense provided ⇤1, ⇤2 are real, and also man-
ifestly obeys ⌃(g) = 0. Now let t⇤ = t + ⇤1

⇥ , so dt⇤ =

dt, v⇤ = r⇥�1(rdt⇤ � ⇥t⇤dr) = v � ⇤1u, thus

g2D = v⇤⇥ ⇤ v⇤ + ⇥⌃(u⇤ v⇤ � v⇤⇥ ⇤ u) + ⇤u⇤ u,

where ⇤ = ⇤2 � ⇤12 is a real parameter. Therefore we
can assume that the time variable has been shifted to
eliminate the ⇤1 term as the expense of the ⇤2 term. We

3

strongly tensorial’) with respect to multiplication by co-
ordinates in the sense[1],

f(⌥, ⇧) = (f⌥, ⇧), (⌥f, ⇧) = (⌥, f⇧), (⌥, ⇧f) = (⌥, ⇧)f

for all elements f of the quantum coordinate algebra and
all 1-forms ⌥, ⇧. It is shown in [1] that this requires g
to commute with elements of the quantum coordinate
algebra. We also require that g is ‘quantum symmetric’
in the sense ⌃(g) = 0. The quantum wedge product here
is an extension of the 1-forms to an associative product on
forms of all degree and to which d extends. Here the basic
one forms dxi, dt obey the usual exterior or Grassmann
algebra (they anticommute). Finally, we need a condition
that expresses reality of the metric coe⇤cients, which we
express as [1, 12]

(⇥ ⇤1 ⇥)flip(g) = g (4)

where ‘flip’ swaps the factors of ⇤1. We will in practice
omit the subscript on the tensor product as this should
be clear from context.

A. Quantum metrics for the �-calculus

For the � family (2) we consider a quantum metric of the
arbitrary form

g =
3�

i,j

aijdx
i⇤dxj+

3�

i

bi(dx
i⇤dt+dt⇤dxi)+cdt⇤dt,

where the coe⇤cients aij , bi, c are all elements in the
quantum spacetime algebra and obey aij = aji. This
form is dictated by ‘quantum symmetry’ in the form
⌃(g) = 0. Using the Leibniz rule and the relation (2)
we have

[g, t] =
3�

i,j

([aij , t] + 2⌃aij)dx
i ⇤ dxj

+
3�

i

([bi, t]� ⌃(�� 1)bi)(dx
i ⇤ dt+ dt⇤ dxi)

+([c, t]� 2⌃�c)dt⇤ dt.

[g, xk] =
3�

i,j

[aij , x
k]dxi ⇤ dxj +

3�

i

[bi, x
k](dxi ⇤ dt

+dt⇤ dxi) + [c, xk]dt⇤ dt.

This means that g central amounts to

[aij , t] = �2⌃aij , ⇧i, j, [bi, t] = ⌃(�� 1)bi, ⇧i,

[c, t] = 2⌃�c, [aij , x
k] = 0, ⇧i, j, k,

[bi, x
k] = 0, ⇧i, k, [c, xk] = 0, ⇧k.

By solving this, we see that our requirements are that
aij , bi, c are all functions only of x, and aij , bi, c are func-
tions in x1, x2, x3 of degree �2,� � 1, 2� respectively.
Hence there is a larger moduli of metrics for this dif-
ferential calculus; we just have to make sure that the
coe⇤cients are homogeneous of the appropriate degree.

If we look among spherically symmetric quantum met-
rics, which seems natural from the form of the algebra
(1), then we have

g = ⌅�1r�2
�

i

⌥i ⇤ ⌥i + ar�2dr ⇤ dr

+br��1(dr ⇤ dt+ dt⇤ dr) + cr2�dt⇤ dt (5)

for ⌅, a, b, c ⌅ R, which by the above is central. Here
⌅ > 0 could be normalised to ⌅ = 1 but we have refrained
from this as it is dimensionful with dimensions of inverse
square length. The quantum metric is quantum sym-
metric and obeys the ‘reality’ condition (4) given that r
commutes with dxi, dt in this calculus.

B. Quantum metrics for the ⇥-calculus

The ⇥ family (3) contains the standard calculus at ⇥ = 1
and we find basically the same result as for that in [1].
We will omit the details and the proof as the methods
are the same but the result is: For the ⇥ family calculi
in dimension n > 2 there are no central quantum metrics
among a reasonable class of coe�cient functions.

One can, however, consider metrics that are spherically
symmetric and commute with functions of r, t. To do this
let us first note that the elements

u = r⇥�1dr, v = r⇥�1(rdt� ⇥tdr), r⇥�1⌥i

commute with r, t. Also

u⇥ = u, v⇥ = ⌃⇥(⇥ � 2)u+ v, ⌥⇥
i = ⌥i

using the commutation relations. Looking in the 2D r�t
sector, the element

g2D = v⇥⇤v+⇥⌃(u⇤v�v⇥⇤u)�⇤1(u⇤v+v⇥⇤u)+⇤2u⇤u

then manifestly commutes with t, r and is ‘real’ in the
hermitian sense provided ⇤1, ⇤2 are real, and also man-
ifestly obeys ⌃(g) = 0. Now let t⇤ = t + ⇤1

⇥ , so dt⇤ =

dt, v⇤ = r⇥�1(rdt⇤ � ⇥t⇤dr) = v � ⇤1u, thus

g2D = v⇤⇥ ⇤ v⇤ + ⇥⌃(u⇤ v⇤ � v⇤⇥ ⇤ u) + ⇤u⇤ u,
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now combine this information with the angular part of
the metric, so

g = r2⇥�2
�

i

⌥i⇥⌥i+au⇥u+bv⇥⇥v+⇥b⌅(u⇥v�v⇥⇥u),

(6)
for a, b ⌅ R, a, b ⇧= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case ⇥ = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8⇧GNT, T = pg + (p+ ⌃)u⇥ u, u2 = �1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ⌃ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

⇧ = gµ�G�⇧ , Uµ = gµ�u� and d�2 for the standard
metric of the unit sphere Sn�2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the �
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = ⇤�1d�2 + ar�2dr ⇥ dr

+br��1(dr ⇥ dt+ dt⇥ dr) + cr2�dt⇥ dt (7)

where a, b, c ⌅ R, ⇤ > 0 and we need b2 � ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

⇤ =
c�2

b2 � ac

and we study the three cases.

(i) If ⇤ > 0 then this implies c, a+ �2

⇤
> 0 and we define

a change of variables

t⇤ =
�⌃
⇤
ln r, r⇤ =

⌃
ct�

⇥
a+ �2

⇤

�r�

when b > 0 and the opposite sign in the 2nd term of r⇤

when b < 0. Then our metric becomes

g = ⇤�1d�2 + e2t
0
⌃

⇤dr⇤2 � dt⇤2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime di⇥erential algebra, governed by a pair
of inverse-square length scales ⇤, ⇤. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
⌅
⇤(r2d�2 + dr2)� dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n� 2)(n� 3)⇤ + 2⇤. (9)

For n = 2 we do not have the ⇤ term and our metric
is indeed 2D de Sitter with inverse square-length scale
⇤, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
⇤ which is not determined by our arguments.

For n ⇤ 3 we now compute the Einstein tensor as

G = � (n� 2)(n� 3)

2
⇤g + ((n� 3)⇤ � ⇤)d�2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

� (n� 2)(n� 3)

2
⇤, �⇤ � (n� 3)(n� 4)

2
⇤ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8⇧GN(p id + U ⇥ u) would require u to have
only one non-zero entry (since otherwise U ⇥ u would
have o⇥-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n� 3)⇤ = ⇤, G = � (n� 2)(n� 3)

2
⇤g,

S = n(n� 3)⇤, Ricci = (n� 3)⇤g

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ⇤ 3 that our mod-
uli of spherically symmetric classical limits of quantum
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the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8⇧GNT, T = pg + (p+ ⌃)u⇥ u, u2 = �1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ⌃ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

⇧ = gµ�G�⇧ , Uµ = gµ�u� and d�2 for the standard
metric of the unit sphere Sn�2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the �
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = ⇤�1d�2 + ar�2dr ⇥ dr

+br��1(dr ⇥ dt+ dt⇥ dr) + cr2�dt⇥ dt (7)

where a, b, c ⌅ R, ⇤ > 0 and we need b2 � ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

⇤ =
c�2

b2 � ac

and we study the three cases.

(i) If ⇤ > 0 then this implies c, a+ �2

⇤
> 0 and we define

a change of variables

t⇤ =
�⌃
⇤
ln r, r⇤ =

⌃
ct�

⇥
a+ �2

⇤

�r�

when b > 0 and the opposite sign in the 2nd term of r⇤

when b < 0. Then our metric becomes

g = ⇤�1d�2 + e2t
0
⌃

⇤dr⇤2 � dt⇤2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime di⇥erential algebra, governed by a pair
of inverse-square length scales ⇤, ⇤. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
⌅
⇤(r2d�2 + dr2)� dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n� 2)(n� 3)⇤ + 2⇤. (9)

For n = 2 we do not have the ⇤ term and our metric
is indeed 2D de Sitter with inverse square-length scale
⇤, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
⇤ which is not determined by our arguments.

For n ⇤ 3 we now compute the Einstein tensor as

G = � (n� 2)(n� 3)

2
⇤g + ((n� 3)⇤ � ⇤)d�2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

� (n� 2)(n� 3)

2
⇤, �⇤ � (n� 3)(n� 4)

2
⇤ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8⇧GN(p id + U ⇥ u) would require u to have
only one non-zero entry (since otherwise U ⇥ u would
have o⇥-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n� 3)⇤ = ⇤, G = � (n� 2)(n� 3)

2
⇤g,

S = n(n� 3)⇤, Ricci = (n� 3)⇤g

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ⇤ 3 that our mod-
uli of spherically symmetric classical limits of quantum
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for a, b ⌅ R, a, b ⇧= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case ⇥ = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.
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for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ⌃ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

⇧ = gµ�G�⇧ , Uµ = gµ�u� and d�2 for the standard
metric of the unit sphere Sn�2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the �
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = ⇤�1d�2 + ar�2dr ⇥ dr
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where a, b, c ⌅ R, ⇤ > 0 and we need b2 � ac > 0 for a
Minkowski signature. The first thing we do is define the
combination
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and we study the three cases.
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when b < 0. Then our metric becomes

g = ⇤�1d�2 + e2t
0
⌃
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From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime di⇥erential algebra, governed by a pair
of inverse-square length scales ⇤, ⇤. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
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but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n� 2)(n� 3)⇤ + 2⇤. (9)

For n = 2 we do not have the ⇤ term and our metric
is indeed 2D de Sitter with inverse square-length scale
⇤, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
⇤ which is not determined by our arguments.

For n ⇤ 3 we now compute the Einstein tensor as

G = � (n� 2)(n� 3)

2
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so that G is diagonal in our coordinate basis with eigen-
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where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8⇧GN(p id + U ⇥ u) would require u to have
only one non-zero entry (since otherwise U ⇥ u would
have o⇥-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n� 3)⇤ = ⇤, G = � (n� 2)(n� 3)
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⇤g,

S = n(n� 3)⇤, Ricci = (n� 3)⇤g

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ⇤ 3 that our mod-
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strongly tensorial’) with respect to multiplication by co-
ordinates in the sense[1],

f(⌥, ⇧) = (f⌥, ⇧), (⌥f, ⇧) = (⌥, f⇧), (⌥, ⇧f) = (⌥, ⇧)f

for all elements f of the quantum coordinate algebra and
all 1-forms ⌥, ⇧. It is shown in [1] that this requires g
to commute with elements of the quantum coordinate
algebra. We also require that g is ‘quantum symmetric’
in the sense ⌃(g) = 0. The quantum wedge product here
is an extension of the 1-forms to an associative product on
forms of all degree and to which d extends. Here the basic
one forms dxi, dt obey the usual exterior or Grassmann
algebra (they anticommute). Finally, we need a condition
that expresses reality of the metric coe⇤cients, which we
express as [1, 12]

(⇥ ⇤1 ⇥)flip(g) = g (4)

where ‘flip’ swaps the factors of ⇤1. We will in practice
omit the subscript on the tensor product as this should
be clear from context.

A. Quantum metrics for the �-calculus

For the � family (2) we consider a quantum metric of the
arbitrary form

g =
n�1�

i,j

aijdx
i⇤dxj+

n�1�

i

bi(dx
i⇤dt+dt⇤dxi)+cdt⇤dt,

where the coe⇤cients aij , bi, c are all elements in the
quantum spacetime algebra and obey aij = aji. This
form is dictated by ‘quantum symmetry’ in the form
⌃(g) = 0. Using the Leibniz rule and the relation (2)
we have

[g, t] =
n�1�

i,j

([aij , t] + 2⌃aij)dx
i ⇤ dxj

+
n�1�

i

([bi, t]� ⌃(�� 1)bi)(dx
i ⇤ dt+ dt⇤ dxi)

+([c, t]� 2⌃�c)dt⇤ dt.

[g, xk] =
n�1�

i,j

[aij , x
k]dxi ⇤ dxj +

n�1�

i

[bi, x
k](dxi ⇤ dt

+dt⇤ dxi) + [c, xk]dt⇤ dt.

This means that g central amounts to

[aij , t] = �2⌃aij , ⇧i, j, [bi, t] = ⌃(�� 1)bi, ⇧i,

[c, t] = 2⌃�c, [aij , x
k] = 0, ⇧i, j, k,

[bi, x
k] = 0, ⇧i, k, [c, xk] = 0, ⇧k.

By solving this, we see that our requirements are that
aij , bi, c are all functions only of x, and aij , bi, c are func-
tions in x1, x2, x3 of degree �2,� � 1, 2� respectively.
Hence there is a larger moduli of metrics for this dif-
ferential calculus; we just have to make sure that the
coe⇤cients are homogeneous of the appropriate degree.

If we look among spherically symmetric quantum met-
rics, which seems natural from the form of the algebra
(1), then we have

g = ⌅�1r�2
�

i

⌥i ⇤ ⌥i + ar�2dr ⇤ dr

+br��1(dr ⇤ dt+ dt⇤ dr) + cr2�dt⇤ dt (5)

for ⌅, a, b, c ⌅ R, which by the above is central. Here
⌅ > 0 could be normalised to ⌅ = 1 but we have refrained
from this as it is dimensionful with dimensions of inverse
square length. The quantum metric is quantum sym-
metric and obeys the ‘reality’ condition (4) given that r
commutes with dxi, dt in this calculus.

B. Quantum metrics for the ⇥-calculus

The ⇥ family (3) contains the standard calculus at ⇥ = 1
and we find basically the same result as for that in [1].
We will omit the details and the proof as the methods
are the same but the result is: For the ⇥ family calculi
in dimension n > 2 there are no central quantum metrics
among a reasonable class of coe�cient functions.

One can, however, consider metrics that are spherically
symmetric and commute with functions of r, t. To do this
let us first note that the elements

u = r⇥�1dr, v = r⇥�1(rdt� ⇥tdr), r⇥�1⌥i

commute with r, t. Also

u⇥ = u, v⇥ = ⌃⇥(⇥ � 2)u+ v, ⌥⇥
i = ⌥i

using the commutation relations. Looking in the 2D r�t
sector, the element

g2D = v⇥⇤v+⇥⌃(u⇤v�v⇥⇤u)�⇤1(u⇤v+v⇥⇤u)+⇤2u⇤u

then manifestly commutes with t, r and is ‘real’ in the
hermitian sense provided ⇤1, ⇤2 are real, and also man-
ifestly obeys ⌃(g) = 0. Now let t⇤ = t + ⇤1

⇥ , so dt⇤ =

dt, v⇤ = r⇥�1(rdt⇤ � ⇥t⇤dr) = v � ⇤1u, thus

g2D = v⇤⇥ ⇤ v⇤ + ⇥⌃(u⇤ v⇤ � v⇤⇥ ⇤ u) + ⇤u⇤ u,

where ⇤ = ⇤2 � ⇤12 is a real parameter. Therefore we
can assume that the time variable has been shifted to
eliminate the ⇤1 term as the expense of the ⇤2 term. We
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g = δ−1dΩ2 + ar−2dr⊗dr + brα−1(dr⊗dt + dt⊗dr) + cr2αdt⊗dt

add spherical symmetry => unique form of quantum metric 
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now combine this information with the angular part of
the metric, so

g = r2⇥�2
�

i

⌥i⇥⌥i+au⇥u+bv⇥⇥v+⇥b⌅(u⇥v�v⇥⇥u),

(6)
for a, b ⌅ R, a, b ⇧= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case ⇥ = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8⇧GNT, T = pg + (p+ ⌃)u⇥ u, u2 = �1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ⌃ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

⇧ = gµ�G�⇧ , Uµ = gµ�u� and d�2 for the standard
metric of the unit sphere Sn�2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the �
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = ⇤�1d�2 + ar�2dr ⇥ dr

+br��1(dr ⇥ dt+ dt⇥ dr) + cr2�dt⇥ dt (7)

where a, b, c ⌅ R, ⇤ > 0 and we need b2 � ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

⇤ =
c�2

b2 � ac

and we study the three cases.

(i) If ⇤ > 0 then this implies c, a+ �2

⇤
> 0 and we define

a change of variables

t⇤ =
�⌃
⇤
ln r, r⇤ =

⌃
ct�

⇥
a+ �2

⇤

�r�

when b > 0 and the opposite sign in the 2nd term of r⇤

when b < 0. Then our metric becomes

g = ⇤�1d�2 + e2t
0
⌃

⇤dr⇤2 � dt⇤2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime di⇥erential algebra, governed by a pair
of inverse-square length scales ⇤, ⇤. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
⌅
⇤(r2d�2 + dr2)� dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n� 2)(n� 3)⇤ + 2⇤. (9)

For n = 2 we do not have the ⇤ term and our metric
is indeed 2D de Sitter with inverse square-length scale
⇤, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
⇤ which is not determined by our arguments.

For n ⇤ 3 we now compute the Einstein tensor as

G = � (n� 2)(n� 3)

2
⇤g + ((n� 3)⇤ � ⇤)d�2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

� (n� 2)(n� 3)

2
⇤, �⇤ � (n� 3)(n� 4)

2
⇤ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8⇧GN(p id + U ⇥ u) would require u to have
only one non-zero entry (since otherwise U ⇥ u would
have o⇥-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n� 3)⇤ = ⇤, G = � (n� 2)(n� 3)

2
⇤g,

S = n(n� 3)⇤, Ricci = (n� 3)⇤g

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ⇤ 3 that our mod-
uli of spherically symmetric classical limits of quantum

This is the Bertotti-Robinson metric. We are forced to it!

solves Einst Eqn with Maxwell field and cosmological constant

2 SHAHN MAJID & WEN-QING TAO

⇥ family’ and which generalises the standard one. In our case we come to these
same di⇥erential calculi out of a systematic classification theory[7] based on pre-Lie
algebras. Remarkably we then find for the � family, in Section 3, that this time
there is a moduli of quantum metrics and in Section 4 we consider their classical
limits and show that in the spherically symmetric case they are all locally of the
form Sn�2⇥dS2 or Sn�2⇥AdS2 depending on the sign of one of the two curvature-
scale parameters ⇤, ⇤̄. This means that they are the Levi-Bertotti-Robinson metric
[8, 9, 10, 11], which has been of interest in a number of contexts in GR and is known
to solve Einstein’s equation with cosmological constant and Maxwell field. We can
write the value of the cosmological constant here as

� =
(n� 2)(n� 3)

2
⇤ � q2GN , q2GN =

1

2

�
(n� 3)⇤ � ⇤̄

⇥

where q is the Maxwell field coupling in suitable units. In our context ⇤ > 0 so that
for small q we are forced to � > 0. Moreover, the arguments that force us to this
form of metric depend on the structure of the di⇥erential algebra when spacetime
is noncommutative, which is believed to be a quantum gravity e⇥ect. In 2D there
is no Sn�2 factor and being the limit of a quantum metric in the � family in 2D
forces the metric to be de Sitter or anti-de Sitter for some scale ⇤̄.

The further noncommutative Riemannian geometry for our quantum metrics in the
� family is obtained by the same methods as in [1] and a brief outline of this is
included in the final Section 5 for completeness. We work in this paper with one
particular algebra (1) assumed to be some local model of quantum spacetime. The
general analysis at lowest order in ⌅, i.e. at the level of a general Poisson structure
on spacetime and the constraints on the classical metric metric arising from being
quantisable along with it, can be found in [2].

An earlier model where vacuum energy was speculated to arise from noncommuta-
tive geometry of the quantum spacetime (1) was the non-relativistic gravity model
in [12]. A cosmological constant is also needed for quantum Born reciprocity in 3D
quantum gravity[13], which paper also shows how the 3D version of (1) can arise
there.

2. Choice of differential structure

Di⇥erential structure on an algebra means for us a specification of the exterior
algebra of ‘di⇥erential forms’ or in practice the commutation relations between
di⇥erentials dxi, dt and quantum spacetime coordinates. The exterior derivative d
on arbitrary noncommutative functions in the coordinates is then defined by the
Leibniz rule. We look for di⇥erential structures that are (i) connected, meaning
only constant functions are killed by d and (ii) translation-invariant with respect
to the additive coproduct on (1). The latter says that as a di⇥erential space this is
much like Rn in the same way that a classical manifold has local coordinates where
the di⇥erentials dxi, dt are related to the standard translation-invariant Lebesgue
measure.

Our starting point is a recent theorem [7] that connected translation invariant
di⇥erential structures of the correct classical dimension on the enveloping algebra
of a Lie algebra g are in 1-1 correspondence with pre-Lie algebra structures on g.

F = q
√

b2 − ac rα−1
dt ∧ dr

76 with it, can be found in Ref. [2]. Some more remarks about
77 this are in the conclusions in Sec. VI.
78 An earlier model where vacuum energy was speculated
79 to arise from noncommutative geometry of the quantum
80 spacetime (1) was the nonrelativistic gravity model in
81 Ref. [12]. A cosmological constant is also needed for
82 quantum Born reciprocity in 3D quantum gravity [13],
83 which also shows how the 3D version of (1) can arise there.

84 II. CHOICE OF DIFFERENTIAL STRUCTURE

85 Differential structure classically turns a topological
86 space into something where we can define vector fields
87 and differential forms. This is something that tends to be
88 taken for granted in physics but is nevertheless an ingre-
89 dient. Differential structure on an algebra means for us
90 similarly a specification of the exterior algebra of “differ-
91 ential forms” or in practice the commutation relations
92 between differentials dxi; dt and quantum spacetime coor-
93 dinates. The exterior derivative d on arbitrary noncommu-
94 tative functions in the coordinates is then defined by the
95 Leibniz rule. We look for differential structures that are
96 (i) connected, meaning only constant functions are killed
97 by d and (ii) translation invariant with respect to the
98 additive coproduct on (1). The latter says that as a differ-
99 ential space this is much like Rn in the same way that a

100 classical manifold has local coordinates where the differ-
101 entials dxi; dt are related to the standard translation-
102 invariant Lebesgue measure.
103 Our starting point is a recent theorem [7] that connected
104 translation-invariant differential structures of the correct
105 classical dimension on the enveloping algebra of a Lie
106 algebra g are in 1-1 correspondence with pre-Lie algebra
107 structures on g. This means a map ∘∶ g ⊗ g → g such that
108 x∘y−y∘x recovers the given Lie algebra bracket and

ðx∘yÞ∘z−ðy∘xÞ∘z ¼ x∘ðy∘zÞ−y∘ðx∘zÞ:
109 Moreover, for a Lie algebra like (1) there is an algebraic
110 method which provides all inequivalent pre-Lie algebra
111 structures, which in the 2D case [14] over C gives two
112 distinct families and three discrete choices at the algebraic
113 level. The corresponding differential structures in the 2D
114 case are computed in Ref. [7] and come out as

ðiÞ∶ ½t;dx% ¼ −λdx; ½t;dt% ¼ λαdt;

ðiiÞ∶ ½x;dt% ¼ λβdx; ½t;dx% ¼ λðβ−1Þdx; ½t;dt% ¼ λβdt;

ðiiiÞ∶ ½t;dx% ¼ −λdx; ½t;dt% ¼ λðdx−dtÞ;
ðivÞ∶ ½x;dx% ¼ λdt; ½t;dx% ¼ −λdx; ½t;dt% ¼ −2λdt;
ðvÞ∶ ½x;dt% ¼ λdx; ½t;dt% ¼ λðdx þ dtÞ:

115 In each case we have listed only the nonzero commutation
116 relations. Of these, clearly, only (i) and (ii) immediately
117 generalize to all dimensions, namely, as the α family

½t; dxi% ¼ −λdxi; ½t; dt% ¼ λαdt ð2Þ

118and the β family

½xi;dt% ¼ λβdxi; ½t;dxi% ¼ λðβ−1Þdxi; ½t;dt% ¼ λβdt

ð3Þ

119for the nonzero relations; cf. Ref. [6], where there are some
120similar relations to these two families. The case β ¼ 1 of
121the second family is the standard calculus used in
122Refs. [1,4,5]. It should also be noted that case (v) is
123equivalent to the standard calculus in 2D in case (ii) by a
124change of variables if we allow a sufficient class of
125functions. Likewise, case (iii) is equivalent to α ¼ −1 in
126case (i) if we allow a sufficient class of functions.
127We consider only these two families (2), (3) in what
128follows: by our above results, they are the only connected
129translation-invariant differential structures in the quantum
130spacetime (1) that work in all dimensions including 2D. To
131fully classify all 4D calculi is also possible by using the
132algebraic method for pre-Lie algebras [15] and could
133include more exotic possibilities, but they are unlikely to
134treat the different xi equally in the sense of spatial rotations
135as otherwise they would specialize to 2D.
136The physical meaning of the parameters α; β thrown up
137by our analysis is best seen from the formulas for the partial
138derivatives. For a normal ordered function fðt; xÞ on the
139quantum spacetime where all the t’s are to the left, say, one
140can deduce from the Leibniz rule and the relations (2) and
141(3), respectively, that

dfðt; xÞ ¼ ∂α
0fðt; xÞdt þ

∂
∂xi fðt; xÞdx

i;

142
dfðt; xÞ ¼ ∂β

0fðt; xÞdt þ
∂
∂xi fðt−λβ; xÞdxi

143for the two cases, where

∂α
0fðtÞ ¼

fðtÞ−fðt−λαÞ
λα

144and similarly for ∂β
0. The spatial partial derivatives are

145unchanged, but the time one becomes a finite difference,
146with the parameters α; β giving the step size in units of λ.
147This is a typical feature of this class of models: spacetime is
148“fuzzy” due to finite λ in the commutation relations (1) but
149without having a lattice, while the differential calculus
150acquires finite differences. This phenomenon is well known
151for the standard β ¼ 1 calculus and responsible for the
152variable speed of light prediction in Ref. [4]. In the β ¼ 1
153case it is slightly better to normal order with the t to the
154right, but for general β there is no advantage. The cases
155α ¼ 0 or β ¼ 0 coincide, and in this case we have the
156classical time derivative.
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formalism of noncommutative Riemannian geometry. We then weaken this by re-
quiring only that g commutes with functions of the radius r =

�
x2
1 + x2

2 + x2
3 and

t and in this case we find a reasonable 2-parameter family of quantum metrics

(1.3) g = r2d�+ adr ⇥⇥dr + b (v� ⇥ v + ⇥(dr ⇥ v � v� ⇥ dr))

in polar coordinates, where the parameters a, b ⌅= 0 are real and v = rdt � tdr,
v� = (dt)r � (dr)t. The first term of g is the angular part of the metric as for flat
spacetime.

We will not actually develop the quantum geometry of such metrics in this paper,
rather we first want to understand their classical limit ⇥ ⇤ 0. We find that the
geometry in this limit is curved and for critical values a = 1 and a = �3 we find
that the Einstein tensor matches Einstein’s equation for a perfect fluid of a certain
pressure ad density depending on b. This gives a physical interpretation as the
Universe being filled with one of these two (albeit not very physical) types of fluid
as a plausible necessity of the existence of noncommutative geometry.

We also find that the classical metric is, after a change of variables a⇥orded by
our geodesic flows, a conformal rescaling of a flat metric. Although we regard the
model here as a toy model or ‘proof of concept’ we believe the rigidity phenomenon
uncovered here to be a generic feature of quantum spacetimes.

As a small application back to noncommutative geometry, the geodesic coordinates
suggest new variables for the quantum algebra and its calculus, and we describe
them in Section 4.

2. Moduli of quantum metrics

We shall use polar coordinates for the bicrossproduct model spacetime[?] where we
replace dxi by ⇤i = eijdxj where eij = �ij � xixj

r2 is projection to the sphere of
constant radius at any point and r2 = xixi. One has xi⇤i = 0. The angular part
of the metric above is ⇤i ⇥ ⇤i. The polar coordinate relations become

[f(r), t] = ⇥rf ⇥(r), [
xi

r
, t] = 0, [f(t), r] = (f(t)� f(t+ ⇥))r

for the algebra, for any function f , and

[⇤i, t] = [⇤i, r] = [dr, t] = [dr, r] = 0

[f(r), dt] = ⇥f ⇥(r)dr, [f(t), dt] = (f(t)� f(t� ⇥))dt.

The relations between 1-forms in the exterior algebra are as classically [?]

{⇤i,⇤j} = {⇤i, dr} = {⇤i, dt} = {dt, dr} = (dr)2 = (dt)2 = 0.

Working with this polar coordinate description one can verify the following lemma.
Since commutation with t entails a shift by ⇥, functions of t that are invariant
under such a shift will automatically be central, we call them ‘periodic’ (depending
on the precise formulation of the algebra completion there may not be any).

Lemma 2.1. In the radial-time sector and up to functions periodic in t, the central
1-forms are linear combinations of dr and v = rdt� tdr.

g = dr⊗dr + b(v∗ ⊗ v + λ(dr⊗ v − v∗ ⊗dr))
b ∈ R

v
∗ = (dt)r − tdr

b ̸= 0

 Example 2 different calculus   

=> in classical limit      

 Class. Quant. Gravity 31 (2014) (w/ Beggs)            

(ii) [xi,dt] = λβdxi, [t, dxi] = λ(β − 1)dxi, [t, dt] = λβdt

� = 1, n = 2
=> unique form of quantum metric
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2. Poisson-Riemannian Geometry 

a.b − b.a = λ{a, b} + O(λ2) ω
ij `Poisson’ tensor

C
∞(M)A0 =

Similarly, quantization of              at order    implies new physical field:   Ω1(M)

{ , } ↔

quantisation at order    means a `Poisson’ bracketλ

λ

a.db − (db).a = λ∇âdb + O(λ2)

λ
2
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Meanwhile, however, there has been much progress in noncommutative di⇥erential
geometry – doing di⇥erential geometry on a noncommutative algebra – and for
this one needs at some point not only an algebra A� (specifying the algebra is like
specifying a topological space) but a ‘di⇥erential graded algebra’ (DGA)

�(A�) = ⌃n�
n, d ⇤ �n � �n+1

obeying d2 = 0 and the graded-Leibniz rule. This plays the role of the algebra of
di⇥erential forms (and is like specifying a di⇥erential structure on a space). In the
constructive ‘quantum groups’ approach this is indeed the next later of geometry
in the role classically of choosing the di⇥erentiable structure on a topological space,
typically using quantum symmetry to narrow down and help select the di⇥erential
structure. This contrasts to other approaches such as that of Connes[6] where the
starting point for the di⇥erential geometry is a hilbert space and operator in the
role of Dirac operator on spinor. The data for the di⇥erential structure at the
semiclassical level was properly analysed in [1] by looking at

a ⇧� db � (db) ⇧� a = �⇥âdb +O(�2).
The assumption of an associative �(A�) and the Leibniz rule for d requires at order
� that ⇥â(bdc) = {a, b}dc + b⇥âdc

(1.1) d{a, b} = ⇥âdb �⇥b̂da

(these follow easily from [a, bdc] = [a, b]dc + b[a,dc] and d[a, b] = [da, b] + [a,db]).
The first requirement says that ⇥ is a covariant derivative along Hamiltonian vector
fields â and the second is a Poisson-compatibility. For simplicity we will speak of a
connection ⇥i in our coordinate basis but if the Poisson tensor in these coordinates
is ⇥ij then we are only really making use of the combination ⇥is⇥s in all that
follows, which is to say a partial connection in the case where ⇥ is degenerate. At
order �2 the associativity of �(A�) requires

(⇥â⇥b̂ �⇥b̂⇥â �⇥ ˆ{a,b})dc = 0
(just consider [a, [b,dc]] + [b, [dc, a]] + [dc, [a, b]] = 0) which is to say that our
(partial) connection has to be flat if we are concerned about this order.

This brings us to the following two quantisation problems given a manifold M
equipped with data (⇥,⇥) as above:

Problem 1: can we quantise the data to an associative DGA
�(A�) such that the above hold?

Problem 2: can we similarly quantise other classical geometrical
structures?

Recently in [5] we have answered both questions in the a⇧rmative, but only at
order �. Working only to this order is a process that we call ‘semiquantisation’
but one could as well call it ‘semiclassicalisation’ depending on one’s point of view.
Formally, instead of working over the ring C[[�]] we work over the ring C[�]⇥(�2)
where we formally set �2 = 0. Both rings are mathematical tricks: in physical
applications one wants � to be an actual (imaginary) number meaning on the one
hand for powerseries to converge and on the other hand, in our case, for O(�2)
terms to be physically neglectable. This should be reasonable when � is the Planck

At order      the bimodule associativity is   
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(1.1) d{a, b} = ⇥âdb �⇥b̂da
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fields â and the second is a Poisson-compatibility. For simplicity we will speak of a
connection ⇥i in our coordinate basis but if the Poisson tensor in these coordinates
is ⇥ij then we are only really making use of the combination ⇥is⇥s in all that
follows, which is to say a partial connection in the case where ⇥ is degenerate. At
order �2 the associativity of �(A�) requires
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Convenient to suppose      an actual connection restricting to r râ
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5.2. Relating general ⇤ and the Levi-Civita ⇧⇤. In general the quantising
connection ⇤ may not be the same as the classical Levi-Civita connection ⇧⇤ for
our chosen metric on M . In this section we write the latter in the general form⇤S = ⇤ + S for some S ⌅ ⇥1(M) � ⇥1(M) ⌃0 ⇥1(M) and we assume that the
quantising connection ⇤ obeys ⇤g = 0. The quantising connection has torsion T
and we lower its indices by the Riemannian metric Tabc = gad T d

bc. It is well-known
(see [18]) that given an arbitrary torsion T , there is a unique metric compatible
covariant derivative ⇤ with that torsion, given by

�a
bc = ⇧�a

bc + 1
2g

ad(Tdbc ⇥ Tbcd ⇥ Tcbd) .(5.6)

Here �a
bc in our case is the Christo⇤el symbols for the quantising connection and⇧�a

bc is the Christo⇤el symbols for the Levi-Civita connection so that ⇤S(dxa) =⇥⇧�a
bc dx

b ⌃ dxc. Hence

(5.7) Sa
bc = 1

2g
ad(Tdbc ⇥ Tbcd ⇥ Tcbd).

As a quick check of conventions, note that this formula is consistent with (4.3).
Throughout this section T is arbitrary which fixes ⇤ such that this is metric com-
patible, and S is the above function of T so that ⇤S = ⇧⇤, the Levi-Civita connection.
Lemma 5.4. The curvatures are related by

⇧Rl
ijk =Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km ,

where semicolon is derivative with respect to ⇤.
Proof. This is elementary: ⇧�m

ji = �m
ji ⇥ Sm

ji so that

⇧Rl
ijk = ⇧�l

ki,j ⇥ ⇧�l
ji,k + ⇧�m

ki
⇧�l
jm ⇥ ⇧�m

ji
⇧�l
km=Rl

ijk ⇥ Sl
ki,j + Sl

ji,k ⇥ �m
ki S

l
jm + �m

ji S
l
km ⇥ Sm

ki �
l
jm + Sm

ji �
l
km+Sm

ki S
l
jm ⇥ Sm

ji S
l
km=Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km . �

This gives a di⇤erent point of view on some of the formulae below, if we wish to
rewrite expressions in terms of the Levi-Civita connection. In the same vein:

Proposition 5.5. Suppose that a connection ⇤ is metric-compatible. Then (⇤,�)
are Poisson-compatible if and only if

(⇧⇤k�)ij + �ir Sj
rk ⇥ �jrSi

rk = 0
or equivalently

�jmSi
mk = 1

2
⇥(⇧⇤k�)ij ⇥ (⇧⇤r�)mj gri gmk + (⇧⇤r�)im grj gmk ⌅ .

Proof. The compatibility condition gives

0 = (⇧⇤m�)ij + �ik (T j
km + 1

2g
jd(Tdmk ⇥ Tmkd ⇥ Tkmd))+�kj (T i

km + 1
2g

id(Tdmk ⇥ Tmkd ⇥ Tkmd))= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm ⇥ Tmkd ⇥ Tkmd)+�kj 1
2g

id(Tdkm ⇥ Tmkd ⇥ Tkmd)= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm + Tmdk ⇥ Tkmd)+�kj 1
2g

id(Tdkm + Tmdk ⇥ Tkmd)

(1) => `quant metric’ g1 := q−1(g −
λ

4
gijω

is(T j
nm;s − Rj

nms + Rj
mns)dxm

⊗0dxn)

∇̂ l.c. of classical g
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Similarly, in the paper [4] we found the commutator of a function a and a 1-form
⇥ � �1

[a, ⇥]� = �⇤ij a,i (⇥j⇥) +O(�2) ,(3.5)

so we could define the deformed product of a function a and a 1-form ⇥ as

a ⇧ ⇥ = a ⇥ + �⇤ij a,i (⇥j⇥)�2 +O(�2) ,
⇥ ⇧ a = a ⇥ � �⇤ij a,i (⇥j⇥)�2 +O(�2) .(3.6)

Again we drop the corrections and regard these as defining a bimodule structure
�1 ⌃1 A1 � �1 and A1 ⌃1 �

1 � �1 where �1 in this context is over k[�]�(�2).
More generally, let (E,⇥E) be a classical bundle and covariant derivative on it, and
define, for e � E,

a ⇧ e = ae + �

2
⇤ij a,i (⇥Eje) +O(�2) ,

e ⇧ a = ae � �

2
⇤ij a,i (⇥Eje) +O(�2) .(3.7)

A brief check reveals that the following associative laws hold to errors in O(�2):
(a ⇧ b) ⇧ e = a ⇧ (b ⇧ e) , (a ⇧ e) ⇧ b = a ⇧ (e ⇧ b) , (e ⇧ a) ⇧ b = e ⇧ (a ⇧ b) ,(3.8)

so we have a bimodule structure E ⌃1 A1 � E and A1 ⌃1 E � E.

We let D̃0 be the category of bundles equipped with covariant derivatives and
bundle maps (not required to intertwine the connections). Let Ẽ1 be the category
of A1-bimodules but with left module maps.

Lemma 3.2. We define the functor Q ⇤ D̃0 � Ẽ1 sending objects to objects according
to (3.7) and sending bundle maps T ⇤ E � F to left module maps

Q(T ) = T + �

2
⇤ij ⇥Fi ⌅ (⇥FjT � T⇥Ej).

The functor restricts to Q ⇤ D0 � E1 as Q(T ) = T .
Proof. Take T0 ⇤ E � F a bundle map. We aim for the bimodule properties

(T0 + �T1)(a ⇧ e) = a ⇧ (T0 + �T1)(e) ,(T0 + �T1)(e ⇧ a) = (T0 + �T1)(e) ⇧ a ,(3.9)

which to errors in O(�2) is
T0(a ⇧ e) + �T1(ae) = a ⇧ T0(e) + �aT1(e) ,
T0(e ⇧ a) + �T1(ea) = T0(e) ⇧ a + �T1(e)a .(3.10)

Using the formula (3.7) for the deformed product gives our conditions as

T0(⇤ij a,i (⇥Eje)�2) + T1(ae) = ⇤ij a,i (⇥FjT0(e))�2 + aT1(e) ,�T0(⇤ij a,i (⇥Eje)�2) + T1(ea) = �⇤ij a,i (⇥FjT0(e))�2 + T1(e)a .(3.11)
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Similarly, in the paper [4] we found the commutator of a function a and a 1-form
⇥ � �1
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a ⇧ e = ae + �

2
⇤ij a,i (⇥Eje) +O(�2) ,

e ⇧ a = ae � �

2
⇤ij a,i (⇥Eje) +O(�2) .(3.7)
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5.2. Relating general ⇤ and the Levi-Civita ⇧⇤. In general the quantising
connection ⇤ may not be the same as the classical Levi-Civita connection ⇧⇤ for
our chosen metric on M . In this section we write the latter in the general form⇤S = ⇤ + S for some S ⌅ ⇥1(M) � ⇥1(M) ⌃0 ⇥1(M) and we assume that the
quantising connection ⇤ obeys ⇤g = 0. The quantising connection has torsion T
and we lower its indices by the Riemannian metric Tabc = gad T d

bc. It is well-known
(see [18]) that given an arbitrary torsion T , there is a unique metric compatible
covariant derivative ⇤ with that torsion, given by

�a
bc = ⇧�a

bc + 1
2g

ad(Tdbc ⇥ Tbcd ⇥ Tcbd) .(5.6)

Here �a
bc in our case is the Christo⇤el symbols for the quantising connection and⇧�a

bc is the Christo⇤el symbols for the Levi-Civita connection so that ⇤S(dxa) =⇥⇧�a
bc dx

b ⌃ dxc. Hence

(5.7) Sa
bc = 1

2g
ad(Tdbc ⇥ Tbcd ⇥ Tcbd).

As a quick check of conventions, note that this formula is consistent with (4.3).
Throughout this section T is arbitrary which fixes ⇤ such that this is metric com-
patible, and S is the above function of T so that ⇤S = ⇧⇤, the Levi-Civita connection.
Lemma 5.4. The curvatures are related by

⇧Rl
ijk =Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km ,

where semicolon is derivative with respect to ⇤.
Proof. This is elementary: ⇧�m

ji = �m
ji ⇥ Sm

ji so that

⇧Rl
ijk = ⇧�l

ki,j ⇥ ⇧�l
ji,k + ⇧�m

ki
⇧�l
jm ⇥ ⇧�m

ji
⇧�l
km=Rl

ijk ⇥ Sl
ki,j + Sl

ji,k ⇥ �m
ki S

l
jm + �m

ji S
l
km ⇥ Sm

ki �
l
jm + Sm

ji �
l
km+Sm

ki S
l
jm ⇥ Sm

ji S
l
km=Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km . �

This gives a di⇤erent point of view on some of the formulae below, if we wish to
rewrite expressions in terms of the Levi-Civita connection. In the same vein:

Proposition 5.5. Suppose that a connection ⇤ is metric-compatible. Then (⇤,�)
are Poisson-compatible if and only if

(⇧⇤k�)ij + �ir Sj
rk ⇥ �jrSi

rk = 0
or equivalently

�jmSi
mk = 1

2
⇥(⇧⇤k�)ij ⇥ (⇧⇤r�)mj gri gmk + (⇧⇤r�)im grj gmk ⌅ .

Proof. The compatibility condition gives

0 = (⇧⇤m�)ij + �ik (T j
km + 1

2g
jd(Tdmk ⇥ Tmkd ⇥ Tkmd))+�kj (T i

km + 1
2g

id(Tdmk ⇥ Tmkd ⇥ Tkmd))= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm ⇥ Tmkd ⇥ Tkmd)+�kj 1
2g

id(Tdkm ⇥ Tmkd ⇥ Tkmd)= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm + Tmdk ⇥ Tkmd)+�kj 1
2g

id(Tdkm + Tmdk ⇥ Tkmd)

(2)

(1)

Simplified Axioms of PRG:

(2) => `quant exterior algebra’ ^1 = ^+ �(· · · ), d1 = d

(3)

12 S. MAJID

other situations such as gauge theory. There is also the matter of extending from
⌦1 to forms of all degree but this turns out[5] to impose no further conditions.

The third layer is the construction of a quantum metric and the natural data for this
will be a classical metric g on M . As one might guess the metric compatibility of ∇
is just that ∇g = 0. To avoid confusion we will write ∇̂ for the classical Levi-Civita
connection of g and we let S be the contorsion tensor of ∇ whereby ∇̂ = ∇+S. It is
well-known in General Relativity that a metric compatible connection is determined
by its torsion tensor T or equivalently a cotorsion tensor S antisymmetric in its outer
indices when all indices are lowered. Hence under our simplifying assumption the
data for ∇ can be thought of as T or S. In this case Poisson compatibility of ∇ can
be written as[5],

(3) ∇̂�!
↵� + S↵

��!
�� + S�

��!
↵� = 0.

The fourth layer is more specialised as it is specifically the quantisation data for
a bimodule quantum Levi-Civita connection (one could be happy with something
weaker) and comes down to the identity

(4) ∇̂⇢Rµ⌫ + S�
↵⌫H

↵
�⇢µ − S�

↵µH
↵
�⇢⌫ = 0

where the curvature R of ∇ combines with the contorsion to define

(5) H↵
�µ⌫ = g��!�⇢ (∇⇢S

↵
µ⌫ +R↵

⌫µ⇢) , Rµ⌫ = 1

2
(H↵

↵µ⌫ −H↵
↵⌫µ) .

The latter is called the generalised Ricci 2-form associated to our classical data. In
summary, the field equations of Poisson-Riemannian geometry come down to[5]:

(0) A metric gµ⌫ and an antisymmetric bivector !µ⌫ typically obeying the
Poisson bracket Jacobi identity;

(1) A metric compatible connection ∇ at least along Hamiltonian vector fields;
(2) Poisson-compatibility of ∇ given in the fully defined case by (3);
(3) The optional quantum Levi-Civita condition (4).

These equations can be quite restrictive, particularly if one also wants to preserve
a symmetry.

Example 3. (Quantizing the Schwarzschild black hole[5]) Solving the above equa-
tions for the Schwarzschild metric in polar coordinates t, r, ✓,�, and asking to pre-
serve rotational symmetry leads to a unique Poisson tensor ! and unique ∇ up to
auxiliary modes. This leads to r, t,dr,dt central (unquantised) and for each r, t one
has a radius r ‘nonassociative fuzzy sphere’

[zi, zj] = �✏ijkzk, [zi,dzj] = �zj✏imnzmdzn.

to order � in coordinates where ∑i z
2
i = 1. Here ∇ on S2 is the Levi-Civita connec-

tion with constant curvature, hence ⌦1 is not associative at order �2.

This uniqueness result was extended to generic static spherically symmetric space-
times in [13].

`QLC condition’
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(3) => `quantum levi-civita conn’    �1 = flip + �(· · · )

Proof is functorial, any classical v. bundle with connection             gets quantised(E,rE)

where

Theorem: can then quantise to order �

br1 = br+ �(· · · ),



Failure       Jacobi identity => quantum algebra nonassociative at

Failure      flat  => quantum differential forms nonassociative  at

O(�2)

O(�2)

!

r

Theorem:  the geometric Laplacian                               gets deformed� = ( , ) � br � d

NONCOMMUTATIVE SPHERICALLY SYMMETRIC

SPACETIMES AT SEMICLASSICAL ORDER

CHRISTOPHER FRITZ & SHAHN MAJID

Abstract. Working within the recent formalism of Poisson-Riemannian ge-
ometry, we completely solve the case of generic spherically symmetric metric
and spherically symmetric Poisson-bracket to find a unique answer for the
quantum di↵erential calculus, quantum metric and quantum Levi-Civita con-
nection at semiclassical order O(�). Here � is the deformation parameter,
plausibly the Planck scale. We find that r, t,dr,dt are all forced to be central,
i.e. undeformed at order �, while for each value of r, t we are forced to have a
fuzzy sphere of radius r with a unique di↵erential calculus which is necessarily
nonassociative at order �

2. We give the spherically symmetric quantisation
of the FLRW cosmology in detail and also recover a previous analysis for the
Schwarzschild black hole, now showing that the quantum Ricci tensor for the
latter vanishes at order �. The quantum Laplace-Beltrami operator for spher-
ically symmetric models turns out to be undeformed at order � while more
generally in Poisson-Riemannian geometry we show that it deforms to

�f + �

2
!
↵�(Ric�↵ − S�

;↵)(∇̂�df)� +O(�2)
in terms of the classical Levi-Civita connection ∇̂, the contorsion tensor S, the
Poisson-bivector ! and the Ricci curvature of the Poisson-connection that con-
trols the quantum di↵erential structure. The Majid-Ruegg spacetime [x, t] =
�x with its standard calculus and unique quantum metric provides an example
with nontrivial correction to the Laplacian at order �.

1. Introduction

In recent years it has come to be fairly widely accepted that quantum gravity e↵ects
could render spacetime better modelled as a noncommutative or ‘quantum’ geom-
etry than a classical one[16]. The remarkable discovery here is that such a quan-
tum spacetime hypothesis is highly restrictive in that not every classical Riemann-
ian or pseudo-Riemannian geometry (M,g) can be quantised while also respecting
symmetries[8, 19], starting with the quantum anomaly for di↵erential calculus or
no-go theorems introduced in [4, 5]. More recently a theory of ‘Poisson-Riemannian
geometry’ in [9] provided a systematic analysis of the constraints on the classical
geometry for the quantisation to exist at least at lowest deformation order. This
emergence of a well-defined order � deformation theory in [9] means that a specific
paradigm of physics, namely of lowest order quantum gravity e↵ects, emerges out

2000 Mathematics Subject Classification. Primary 81R50, 58B32, 83C57.
Key words and phrases. noncommutative geometry, quantum groups, quantum gravity, quan-

tum cosmology.
This work is supported in part by the Science and Technology Facilities Council (grant number
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1

�1f = �

i1(dx
µ ^ dx⌫) =

1

2
(dxµ ⌦ dx⌫ � dx⌫ ⌦ dxµ) + �Iµ⌫↵�dx

↵ ⌦ dx�

Similarly, given a lifting 

Define            by lifting and contracting curvature of the QLC, and Ricci scaler     
by contracting this (using the quantum metric)

Ricci1
S1 = ( , )1Ricci1

and similarly the manifold dimension gets deformed to

8

g1 = g1µνdxµ ⊗1 dxν = dxµ • g̃µν ⊗1 dxν = dxµ ⊗1 g̃µν • dxν

so that

g̃µν = g1 µν +
λ

2
ωαβΓγ

αµgγν,β = gµν +
λ

2
hµν (2.11)

to order λ, where we also write hµν for the leading order correction in g̃µν. Here g1µν is read 
off from (2.9) as the quantum metric coefficients when we choose to use the undeformed 
product and g̃µν are the coefficients when we choose to reorder and use the deformed product 
as stated (we can also place the g̃µν with the second factor since ⊗1 behaves well with respect 
to the • product as we explained above). The two sets of coefficients are related by (2.11) but 
in different calculations one or the other may be easier to work depending on the context (the 
same remark will apply to all our other quantum tensors). From (2.9) and (2.11) we find

hµν = Rµν + ωαβ(ΓµακΓ
κ
βν + Γγ

αµgγν,β) = −hνµ (2.12)

where we use metric compatibility of ∇ in the form gγν,β = Γγβν + Γνβγ  to replace the sec-
ond term to more easily verify antisymmetry. We let g̃µν be the A-valued matrix inverse so that 
g̃µν • g̃νγ = δγµ = g̃γν • g̃νµ and define

(dxµ, dxν)1 = g̃µν = gµν − λ

2
h̃µν (2.13)

which we extend by ( f • dxµ, dxν • f̃ )1 = f • (dxµ, dxν)1 • f̃  for any functions f , f̃ . This gives 
us a bimodule map (,)1 : Ω1 ⊗1 Ω1 → A inverse to g1 in the usual sense of noncommutative 
geometry [9], namely

((,)1 ⊗ id )(η ⊗1 g1 ) = η = (id ⊗ (, )1 )(g1 ⊗1 η)

for all η ∈ Ω1, except that we only claim these facts to order λ. From the above,

h̃µν = gµαgνβhαβ + gµα{gαβ , gβν}= Rµν + ωαβ(Γµ
ακΓ

κ
βγgνγ + Γµ

αγgνγ ,β)

= Rµν − ωαβgηζΓµ
αηΓ

ν
βζ = −h̃νµ

and R has indices raised by g. As an application, in bimodule noncommutative geometry there 
is a quantum dimension [9] which we can now compute.

Proposition 2.1. In the setting above, the ‘quantum dimension’ to order λ is

dim1 := (,)1 (g1 ) = dim(M) +
λ

2
{gµν , gµν}.

Proof. Given the above results, we have

dim1 = (dxµ • g̃µν , dxν)1 = g̃µν • g̃µν + ([dxµ, gµν ], dxν)

= dim(M) +
λ

2
(hµν − hνµ)gµν + λωαβgµν,αΓ

µ
βγgγν = dim(M)− λωαβgµν

,αΓνβµ

where the middle term vanishes as gµν is symmetric and we transferred to the derivative to 
the inverse metric. We can now use metric compatibility in the form Γµβν + Γνβµ = gµν,β to 
obtain the answer. □

Finally, the theory in [10] says that there is a quantum torsion free quantum metric compat-
ible (or quantum Levi-Civita) connection ∇1 : Ω1 → Ω1 ⊗1 Ω1 to order λ if and only if

C Fritz and S Majid Class. Quantum Grav. 34 (2017) 135013
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2.5. Fuzzy nonassociative sphere revisited. The case of the sphere in Poisson-
Riemannian geometry is covered in [10] mainly in very explicit cartesian coordinates
where we broke the rotational symmetry. However, the results are fully rotationally
invariant as is more evident if we work with zi, i = 1,2,3 and the relation ∑i zi2

= 1.
We took ∇ = ∇̂ (the Levi-Civita connection) so S = 0, and ! the inverse of the
canonical volume 2-form on the unit sphere. Then the results of [10] give us a
particular ‘fuzzy sphere’ di↵erential calculus

[zi, zj
]● = �✏ij

kzk, [zi,dzj
]● = �zj✏i

mnzmdzn.

to order �. These are initially valid for i = 1,2 but must hold in this form for
i = 1,2,3 by rotational symmetry of both the Poisson bracket and the Levi-Civita
connection. One also finds from the algebra that zm

●dzm
= 0 (sum over m = 1,2,3)

at order � on di↵erentiating the radius 1 relation. Here ⌦1 is a projective module
with dzi as a redundant set of generators and a relation. We also have

{dzi,dzj
}● = �(3zizj

− �ij)Vol

to order � as derived in [10] for i = 1,2 and which then holds for i = 1,2,3. This
can also be derived by applying d to the bimodule relations and using dzi

∧ dzj
=

✏ij
kzkVol at the classical level on the unit sphere. We will also use the antisymmetric

lift �Vol = 1
2(z

3
)
−1
(dz1 ⊗ dz2 − dz2 ⊗ dz1) at the classical level. The classical sphere

metric gµ⌫ is given in [10] in the z1, z2 coordinates but we can also write it as

g =
3

�

i=1
dzi
⊗ dzi

Similarly, the inverse metric and metric inner product are

gµ⌫
= �µ⌫ − zµz⌫ , (dzi,dzj

) = �ij − zizj

for µ, ⌫ = 1,2, which extends as the second equality for i, j = 1,2,3. The sphere is
2-dimensional so only two of the zi are independent in any coordinate patch but
the expressions themselves are rotationally invariant in terms of all three.

The work [10] also computes the quantum metric and quantum Levi-Civita con-
nection at order �. We have

g1 =gµ⌫dzµ
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2.5. Fuzzy nonassociative sphere revisited. The case of the sphere in Poisson-
Riemannian geometry is covered in [10] mainly in very explicit cartesian coordinates
where we broke the rotational symmetry. However, the results are fully rotationally
invariant as is more evident if we work with zi, i = 1,2,3 and the relation ∑i zi2

= 1.
We took ∇ = ∇̂ (the Levi-Civita connection) so S = 0, and ! the inverse of the
canonical volume 2-form on the unit sphere. Then the results of [10] give us a
particular ‘fuzzy sphere’ di↵erential calculus

[zi, zj
]● = �✏ij
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]● = �zj✏i

mnzmdzn.
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associative algebra U(su2),  non associative diff calculus due to 
curvature
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The result (and similarly in any rotated coordinate chart) is

i1(dz1 ∧ dz2) =
1

2
�dz1 ⊗1 dz2 − dz2 ⊗1 z1� −

3�

4z3
g

Ricci1 = −
1

2
g1

where the latter in our conventions is analogous to the classical case. And from
this or from (2.23) we get the quantum scalar curvature

S1 = −
1

2
Ŝ, Ŝ = R̂µ⌫gµ⌫

= 2

the same as classically in our conventions, so this has no corrections at order �.
As remarked in the general theory, the quantum Ricci scalar is independent of the
choice of lift I.

We also find no correction to the Laplacian at order � since the classical Ricci
tensor is proportional to the metric hence the contraction in Theorem 2.3 gives
!↵�
(∇̂�df)↵ which factors through ∇̂ ∧ df = 0 due to zero torsion of the Levi-

Civita connection.

We close with some other comments about the model. In fact the parameter �
in this model is dimensionless and if we want to have the usual finite-dimensional
‘spin j’ representations of our algebra then we need

� = ı�
�

j(j + 1)

for some natural number j as a quantisation condition on the parameter. Our reality
conventions require � imaginary. It is also known from [7] that this di↵erential
algebra arises from twisting by a cochain at least to order �2 but in such a way that
the twisting also induces the correct di↵erential structure at order �, i.e. as given
by the Levi-Civita connection. We take U(so1,3) with generators and relations

[Mi,Mj] = ✏ijkMk, [Mi,Nj] = ✏ijkNk, [Ni,Nj] = −✏ijkMk

acting on the classical zi (i.e. converting [7] to the coordinate algebra) as,

Mi▷zj
= ✏ijkzk, Ni▷zj

= zizj
− �ij .

This is the action of so1,3 on the ‘sphere at infinity’. The cochain we need is then[7]

F −1 = 1 + �f +
�2

2
f2
+�, f =

1

2
Mi ⊗Ni

where the higher terms are conjectured to exist in such a way that the algebra
remains associative at all orders (and gives the quantisation of S2 as a quotient of
U(su2)). On the other hand cochain twisting extends the di↵erential calculus to
all orders as a graded quasi-algebra in the sense of [8]. Specifically, if we start with
the classical algebra and exterior algebra on the sphere, the deformed products are

zi
● zj
= (F −1▷zi

)(F −2▷zj
) = zizj

+
�

2
✏ijkzk

zi
● dzj

= (F −1▷zi
)dF −2▷zj

= zidzj
+

�

2
zj✏imnzmdzn

dzj
● zi
= (F −1▷dzj

)dF −2▷zi
= (dzj

)zi
−

�

2
zi✏jmnzmdzn

−
�

2
✏ijmdzm

=>              undeformed at first order

X
(zi)2 = 1

�1 = �
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prove in the present section that this is generically true. For the metric we choose
a diagonal form

g = a2(r, t)dt⊗ dt + b2(r, t)dr ⊗ dr + c2(r, t)(d✓ ⊗ d✓ + sin2(✓)d�⊗ d�)
where a, b, c are arbitrary functional parameters. The Poisson tensor is taken to be
the same as in Section 3, once again parameterized by

!23 = f(t, r)
sin ✓

= −!32, !01 = g(t, r) = −!10

The Christo↵el symbols for the above metric are

(4.1)

�̂0
00 =

@ta

a
, �̂0

01 =
@ra

a
, �̂0

33 = −
b@tb sin2(✓)

a2
, �̂0

11 = −
b@tb

a2
, �̂0

22 = −
c@tc

a2

�̂1
00 = −

a@ra

b2
, �̂1

11 =
@rb

b
, �̂1

33 = −
b@rb sin2(✓)

b2
, �̂1

01 =
@tb

b
, �̂1

22 = −
c@rc

b2

�̂2
02 =

@tc

c
, �̂2

21 =
@rc

c
, �̂2

33 = − sin(✓) cos(✓)

�̂3
03 =

@tc

c
, �̂3

31 =
@rc

c
, �̂3

23 = cot(✓)

Now for the quantum Levi-Civita connection.

Theorem 4.1. For a generic spherically symmetric metric with functional param-
eters a, b, c and spherically symmetric Poisson tensor, the Poisson-compatibility
(2.2) and the quantum Levi-Civita condition (2.12) require up to normalisation
that g(r, t) = 0 and f(r, t) = 1 and the contorsion tensor components

S022 = c@tc, S122 = c@rc, S033 = c@tc sin2(✓), S133 = c@rc sin2(✓)
S120 = S123 = S223 = S320 = S130 = S132 = S230 = S233 = 0

up to the outer antisymmetry of Sµ⌫� . The remaining components Sµ0⌫ , Sµ1⌫

remain undetermined but do not a↵ect !↵�∇�, which is unique. The relations of
the quantum algebra are uniquely determined to O(�) as those of the fuzzy sphere

[zi, zj] = �✏ij
kzk, [zi,dzj] = �zj✏i

mnzmdzn

as in Section 2.5 and

[t, xµ] = [r, xµ] = 0, [xµ,dt] = [xµ,dr] = 0

so that t, r, dt, dr are central at order �.

Proof. The first part is very similar to the proof of Proposition 3.1 but with more
complicated expressions. We once again require that either f = k or g = 0 for ! to be
Poisson. Taking first f = k and leaving g arbitrary gives the Poisson compatibility
condition (2.2) as

S1
02 = 0, S3

01 = 0, S3
22 = 0, S3

10 = 0, S0
12 = 0, S3

32 = 0,

gabS0
01 + ab@rg + ga@rb + gb@ra = 0, ab2@tg + abg@tb + b2g@ta + a3gS0

11 = 0

c2S3
31 − b2S1

22 + 2c@rc = 0, kc2S0
31 + gb2 sin(✓)S1

12 = 0, g@tc sin(✓)− cS1
32 = 0,

a2g sin(✓)S3
12 − ka2S0

22 − kc@tc = 0, gb2S3
02 sin(✓) + kb2S1

22 sin(✓) − kc@rc = 0,

S1
12 + S0

02 = 0, kcS0
32 + g@rc sin(✓) = 0, g sin(✓)S3

11 + kS0
21 = 0,

kc@rc + gb2 sin(✓)S3
02 + kc2S3

31 = 0, kd3 sin(✓)S3
21 − gb2@tc = 0,

c2S3
30+a2S0

22a
2+2c@rc = 0, gS3

00b
2 sin(✓)+ka2S0

21 = 0, kc2S0
31−gb2S0

02 = 0

kc3 sin(✓)S3
20−a2g@rc = 0, kc@tc−ga2S3

12 sin(✓)+kc2S3
30, a2S3

11−b2S3
00 = 0

Uniqueness theorem w/Fritz  Class. Qua. Grav (2017)

generic spherically symmetric metric & p.b. =>  unique quantisation to        +O(�2)
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=>                      central `unquantized radius and time’ and at each r, tr, t, dr, dt
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X
(zi)2 = 1

E.g. Schwarzschild black hole; Ric1 = O(�2)

`non associative fuzzy sphere’ as above

Need algebraic independence eg Bertotti-Robinson metric is 
not generic and has a quantisation as above, with 

�1 = �
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is not directly applicable as it is not valid on the imaginary axis but we can still proceed in a 
similar way for the other mode by defining

τU(s) = ı
U(1,0,0)(1, 2, 2ıs)

U(1, 2, 2ıs)
= T(s) + ıS(s)

where the real function T(s) resembles π2 tanh(s) (but is vertical at the origin) and S(s) resem-
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10 = − acα
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, Γ̂0
11 = −baαr−α−2

b2 − ac

Figure 1. Functions τM  and τU related to differentials of Kummer M(1 − a, 2, 2ıs) and 
U(1 − a, 2, 2ıs) at a  =  0 and similar to tan, tanh and a shifted ln (shown dashed for 
reference).
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respectively, where R̂µν  is the classical Ricci tensor. This second version is useful for the 

quantum reality condition, which says that if we write ˜̃R1µν = R̂µν + λρµν then the quantum 

correction ρµν  is required to be antisymmetric. Remember that this will have contributions 
from R̃1 as well as the terms directly visible in (2.22).

We then define the quantum Ricci scaler as

S1 = (,)1 Ricci1 = − 1
2

R̃1 µν • g̃νµ (2.23)

which does not depend on the lifting tensor I due to the antisymmetry of the first two indices 
of R̂. There does not appear to be a completely canonical choice of Ricci in noncommutative 
geometry as it depends on the choice of lifting for which we have not done a general analysis, 
but this constructive approach allows us to begin to explore it. The reader should note that the 
natural conventions in our context reduce in the classical limit to − 1

2 of the usual Riemann and 
Ricci curvatures, which we have handled by putting this factor into the definition of the tensor 
components so that these all have limits that match standard conventions.

2.3. Laplacian in the bicrossproduct model

We apply the above formalism to the bicrossproduct model quantum spacetime [26]. Much of 
the quantum geometry (but not the Laplacian) was already solved to all orders by algebraic 
methods in [9] and the appendix carefully checks that our new tensor calculus formulae agree 
with that to order λ (this is not easy and provides a critical check).

The 2D version here has coordinates t, r with r invertible and Poisson bracket {r, t}  =  r or 
ω10 = r  in the coordinate basis. The work [9] used r rather than x as this is also the radial geom-
etry of a higher-dimensional model. The Poisson-compatible ‘quantising’ connection is given 
by Γ0

01 = −r−1,Γ0
10 = r−1 or in abstract terms ∇dr = 0 and ∇dt = r−1(dt ⊗ dr − dr ⊗ dt). 

Letting v = rdt − tdr, we have ∇dr = ∇v = 0 so a pair of central 1-forms v, dr at least at first 
order. This model has trivial curvature of ∇ (and is indeed associative) but in other respects is 
a good test of our formulae with nontrivial torsion and contorsion and curvature of the Levi-
Civita connection.

Next we take classical metric g = dr ⊗ dr + bv ⊗ v where b  is a nonzero real parameter. 
It clearly has inverse (dr, dr) = 1, (v, v)  =  b −1, (dr, v) = (v, dr) = 0 and is the unique form 
of classical metric for which ∇g = 0 for the above Poisson-compatible connection. This was 
shown in [9] where it was also shown that the classical Riemannian geometry is that of either 
a strongly gravitating particle or an expanding universe according to the sign of b . The Levi-
Civita connection for g  is

∇̂v = − 2 v
r

⊗ d r, ∇̂d r =
2 bv

r
⊗ v.

In tensor terms, now in the coordinate basis x0  =  t and x1  =  r, the metric tensor and Levi-
Civita connection are see [9, appendix]
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Γ̂0
µν =

(
−2 bt r−1 (1 + 2 bt2 )

r−1 (1 + 2 bt2 ) −2 r−2 t(1 + bt2 )

)
, Γ̂1

µν =

(
−2 br 2 bt
2 bt −2 br−1 t2

)

The contorsion tensor can be written [9 ]

Sκ
αβ = 2 bϵαµxµϵβνgκν , Sµ = 2

xµ

r2

where ϵ01 = 1 is antisymmetric. Then formula (2.10) gives R10 = br  or Rµν = −brϵµν and 
hence R = R10dt ∧ dr = bv ∧ dr as in [10, section 7.1]

We also write

d f = f,rd r + f,td t = (∂rf )d r + (∂vf )v; ∂vf =
1
r

f,t, ∂rf = f,r +
t
r

f,t

Then

!f = (,)∇̂d f = (,)((∂rf )∇̂d r + (∂vf )∇̂v + d ∂rf ⊗ d r + d ∂vf ⊗ v)

=
2
r
(∂rf ) + ∂ 2

r f + b−1 ∂ 2
v f

is the classical Laplacian for g. When b  <  0 the interpretation of the classical geometry is that 
of a strong gravitational source and curvature singularity at r  =  0. Being conformaly flat after 
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while the massive modes are harder to describe due to the conformal factor. One can similarly 
solve the expanding universe case where b  >  0 and the interpretation of the r,t variables is 
swapped. This completes the classical data.
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f = r′e
− 1

2 ωr′
(
λP+

ı
√

bλ2
P+4

√
−b

)(
AM(1 − ı

√
−bλP√

bλ2
P + 4

, 2, ı
√

bλ2
P + 4

ωr′√
−b

)

+BU(1 − ı
√
−bλP√

bλ2
P + 4

, 2, ı
√

bλ2
P + 4

ωr′√
−b

)

)

for constants A and B. M(a, b, z) and U(a, b, z) denote the Kummer M and U functions 
(or hypergeometric 1F1, U respectively in Mathematica). In the limit λP → 0, this becomes

f =
ı

2

√
−bA
ω

eı
ωr′√
−b +

ı

2

√
−b(B − A)

ω
e−ı ωr′√

−b

which means we recover our two independent solutions ψ±
ω  as a check. Bearing in mind that 

our equations are only justified to order λ, we can equally well write

ψω(t, r) =
eıωt

r

r
e−ı ω

r
√

−b

(
1− ı

√
−bλP

2

)

(
AM(1 − ı

√
−bλP

2
, 2, ı

2ω
r
√
−b

) + BU(1 − ı
√
−bλP

2
, 2, ı

2ω
r
√
−b

)

)

and proceed to analyse the behaviour for small λP  in terms of integral formulae. Thus

M(1 − a, 2, z) =
1

Γ(1 − a)Γ(1 + a)

∫ 1

0
ezu(

1 − u
u

)adu=

∫ 1

0
ezu(1 + aln(

1 − u
u

))du+ O(a2)

which we evaluate for z = 2ıs and s real in terms of the function

τM(s) = ı
M(1,0,0)(1, 2, 2ıs)

M(1, 2, 2ıs)
=

∫ 1

0
e2ısuln(

1 − u
u

)du

ı

∫ 1

0
e2ısudu

shown in figure  1 . This function in the principal region (containing s  =  0) is qualitatively 
identical to the trig function −2 tan(s/2) but blows up slightly more slowly as s → ±π. This 
gives us M(1 − a, 2, 2ıs) = 1

2ıs (e
2is − 1)(1 + aıτM(s)) + O(a2) and hence with a= ı

√
−bλP

2  
and s = ω

r
√
−b, we have up to normalisation

ψM
ω (t, r) = eı

ωt
r sin(

ω

r
√
−b

)e−
ω
2 r λP

(
1 + r

ω

√
−bτM( ω

r
√

−b)
)

+ O(λ2
P), |r| > |ω|

π
√
−b

as one of our independent solutions. Notice that for λP ̸= 0 our solution blows up and our 
approximations break down as r approaches a certain minimum distance as shown to the clas-
sical Ricci singularity at r  =  0, depending on the frequency. This is a geometric ‘horizon’ of 
some sort (with scale controlled by 

√
−b) but frequency dependent, and very different effect 

from the usual Planck scale bound |r| ≫ |ω|λP needed in any case for our general analysis. 
Meanwhile for large |r|, the effective λP  is suppressed as τ ′M(0) = −1.

For the other mode, the similar integral

U(1 − a, 2, z) =
1

Γ(1 − a)

∫ ∞

0
e−zu(

1 + u
u

)adu
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is not directly applicable as it is not valid on the imaginary axis but we can still proceed in a 
similar way for the other mode by defining

τU(s) = ı
U(1,0,0)(1, 2, 2ıs)

U(1, 2, 2ıs)
= T(s) + ıS(s)

where the real function T(s) resembles π2 tanh(s) (but is vertical at the origin) and S(s) resem-
bles − ln(e−γ + 2|s|) as also shown in figure 1, where γ ≈ 0.577 is the Euler constant. Then 
U(1 − a, 2, 2ıs) = 1

2ıs (1 + aıτU(s)) + O(a2) giving up to normalisation

ψU
ω (t, r) = eı

ωt
r e−ı ω

r
√

−be−
ω
2 r λP

(
1 + r

ω

√
−bτU( ω

r
√

−b)
)

+ O(λ2
P)

as a second solution. This still has our general Planck scale lower bound needed for the general 
analysis but no specific geometric bound at finite radius as τU does not blow up and moreover 
has only a mild log divergence as s → ∞ or r → 0. There is no particular suppression of λP  
as s → 0 or r → ∞ and indeed τU tends to a constant nonzero imaginary value (the meaning 
of which is unclear as it can be absorbed in a normalisation).

Both of our solutions have been exhibited as deviations from the classical solutions and 
consequently they can reasonably be expected to lead to physical predictions, such as a change 
of the group velocity along the lines of [1] and of gravitational redshift along the lines of [25]. 
However, doing this in a convincing way in a GR setting requires rather more analysis and is 
beyond our scope here.

2.4. Laplacian in the 2D Bertotti–Robinson model

By way of contrast we note that the bicrossproduct spacetime algebra has an alternative differ-
ential structure for which the full quantum geometry was also already solved, in [28]. We 
have the same Poisson bracket as above but this time the zero curvature ‘quantising’ con-
nection ∇d r = 1

r d r ⊗ d r, ∇d t = −α
r d t or non-zero Christoffel sysmbols Γ1

11 = −r−1 and 
Γ0

10 = αr−1 and the de Sitter metric in the form

g = ar−2dr ⊗ dr + brα−1(dr ⊗ dt + dr ⊗ dr) + cr2αdt ⊗ dt

where only the nonzero combination δ̄ = cα2/(b2 − ac) of parameters is relevant up coor-
dinate transformations. One can easily compute the classical Levi-Civita connection in these 
coordinates as

Γ̂0
00 = − bcαrα

b2 − ac
, Γ̂0

10 = − acα
r(b2 − ac)

, Γ̂0
11 = −baαr−α−2

b2 − ac

Figure 1. Functions τM  and τU related to differentials of Kummer M(1 − a, 2, 2ıs) and 
U(1 − a, 2, 2ıs) at a  =  0 and similar to tan, tanh and a shifted ln (shown dashed for 
reference).
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Overview

deform           ⌦(M) often get quantum anomaly for diff 
calculus with symmetry
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quantum anomaly for diff 
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Bonus 1 of NCRG: works over any field k e.g.
F2 `digital geometry’  w/ A. Pachol arXiv:1807.08492 (math.dg) 

MAJID DQGA Part B2

Algebra Relations dim A dim ⌦1 # metrics # QLCs # Rr = 0 # Ricci = 0
F2Z2 x2 = 0 2 1 2 1 1 1
F2(Z2) x2 = x 2 1 1 1 1 1
F4 x2 = 1 + x 2 1 3 1 1 1

x2 = y2 = xy = 0 3 2 0 - - -
F2(Z3) x2 = x, y2 = y, xy = 0 3 2 1 4 1 3

x2 = x, y2 = xy = 0 3 2 0 - - -
F2Z3 x3 = x + x2 3 2 3 12 1 3

x3 = 0 3 2 0 - - -
F8 x3 = 1 + x2 3 2 7 40 13 18

x2 = x, y2 = yx = 0, xy = y 3 2 0 - - -

Table 1: Number of metrics, connections, flat connections for the di↵erent parallelisable quantum
geometries of algebra dimension  3 over F2, universal ⌦1 and top degree ⌦2. Data from [MP].

regular case where the basis in degree 1 generates the other bases so that ⌦ ⇠= A⌦⇤ for a finite-
dimensional graded algebra ⇤ of basic forms and use the algebra classification for this also. Specifying
at least to ⌦2, torsion and curvature of a connection are defined by Tr = ^r � d : ⌦1 ! ⌦2 and
Rr = (d⌦id � id ^ r)r : ⌦1 ! ⌦2⌦A⌦1. These formulae are just a conversion from usual textbook
definitions involving vector fields in classical Riemannian geometry to a version in terms of the
exterior algebra and phrased in a way that makes sense without assuming commutativity. We are
then ready to classify finite quantum geometries in terms of metrics and QLCs over Fpd with A of
dimension n. To mitigate the risk that there is ‘no much out there’, I have done early reconnaissance
work in the form of a recent preprint [MP] with my former EU Maire-Curie postdoc which covers
n  3 and t  2 (so, 1D or 2D quantum geometries). A summary of results is in Table 1 and shows
an increasingly rich moduli with 9 Ricci-flat but non-flat connections (independent of any lift). All
the interesting ones at this level have A commutative and m = n � 1, which I expect to change
dramatically for n � 4 with an ‘exponential’ growth in number of quantum geometries. For example,
a large number of m = 2 geometries are already known for M2(C) and most of these should work over
F2 to give n = 4 examples. Computationally, the hard part will be to solve for QLCs which, if done
by brute force, requires to try 232 or about 4 billion cases for n = 4. This is not out of range for a
more powerful computer and e�cient coding but we will also look at other strategies. If not enough
QLCs exist then there is a weaker linear notion replacing rg = 0 by (d⌦id � (^⌦id)(id⌦r))g = 0
(‘cotorsion free’) for a weak or WQLC. One strategy will solve this first before solving for a full QLC.
I will compute the Laplacian � = ( , )rd for all viable quantum geometries found.

For Objective 1.3 I will start with the current approach via a lifting i : ⌦2 ! ⌦1⌦⌦1 and [M5, M6]

Ricci = (( , )⌦id)(id⌦i⌦id)(id⌦Rr)g 2 ⌦1⌦A⌦1, S = ( , )Ricci 2 A.

A starting point for Einstein will be Ricci + ↵Sg for suitable ↵ 2 Fpd , which I expect to be model-
dependent and to relate to the ‘quantum dimension’ ( , )(g). I will aim for Einstein=0 for a 2D
quantum geometry and more generally conservation (( , )⌦id)rEinstein = 0 by choice of i, ↵.
Another idea is to define Ricci in terms of the Laplace-Beltrami � on functions and 1-forms (both
of which we have from the QLC) via the equation [d, �]a = Ricci(da) for all a 2 A which holds
classically. The problem is that Ricci defined this way is not manifestly a tensor in the quantum case
and I will try some adaptations. I will also explore the variational definition among those quantum
geometries with a unique QLC in the first instance. For the stress-energy tensor, I will similarly seek
conserved form-based expressions for scalar, and U(1) gauge fields on a quantum geometry. I will
also consider a Hodge * approach, in all cases using the atlas from Objective 1.1 as a test bed.

For Hawking radiation in Objective 1.2, the classical method requires us to have a foliation by
spacelike hypersurfaces so that any function at a surface evolves obeying the wave equation �+m2 = 0
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All digital algebras dim <4 that admit a parallelisable diff calculus 
and top form degree 2, including 9 which are Ricci flat but not flat
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Algebra B or F2(Z3) with its only metric gB. The inverse metric, quantum dimen-
sion and Laplacian are

gijB = (!i,!j) = �1 + x x + y
x + y 1 + y � , dimB = 0, � = 0

for all four QLC’s.

Algebra F or F8 = F2[y]�(y3 + y2 + 1) with its four metrics gF.1 − gF.4 which admit
QLCs. The corresponding inverse metrics and quantum dimensions are:

gijF.1 = (!i,!j) = � 0 1 + y + y2
1 + y + y2 1

� , dimF.1 = 1
gijF.2 = (!i,!j) = � 1 1 + y

1 + y 1
� , dimF.2 = 1

gijF.3 = (!i,!j) = � 1 y2

y2 0
� , dimF.3 = 1

gijF.4 = (!i,!j) = �y + y2 1 + y
1 + y 1 + y2� , dimF.4 = 0.

For each metric the Laplacians can be grouped into 3 cases depending on the
connection:

Metric gF.1∇F.1.1,∇F.1.6,∇F.1.9,∇F.1.12: �1 = 0,�y = 0,�y2 = y2, Tr(�) = 1
∇F.1.2,∇F.1.5,∇F.1.7,∇F.1.8: �1 = 0,�y = 0,�y2 = 1 + y + y2, Tr(�) = 1
∇F.1.3,∇F.1.4,∇F.1.10,∇F.1.11: �1 = 0,�y = y2,�y2 = 1, Tr(�) = 0.
Metric gF.2∇F.2.1,∇F.2.2,∇F.2.10,∇F.2.11: �1 = 0,�y = y,�y2 = 0, Tr(�) = 1
∇F.2.4,∇F.2.6,∇F.2.8,∇F.2.9: �1 = 0,�y = 1 + y + y2,�y2 = 0, Tr(�) = 1
∇F.2.3,∇F.2.5,∇F.2.7,∇F.2.12: �1 = 0,�y = y + y2,�y2 = 1 + y + y2, Tr(�) = 0.
Metric gF.3∇F.3.1,∇F.3.4,∇F.3.5,∇F.3.8: �1 = 0,�y =�y2 = y2, Tr(�) = 1
∇F.3.3,∇F.3.6,∇F.3.10,∇F.3.11: �1 = 0,�y =�y2 = y, Tr(�) = 1
∇F.3.2,∇F.3.7,∇F.3.9,∇F.3.12: �1 = 0,�y = 1,�y2 = 1 + y, Tr(�) = 0.
Metric gF.4 (for all ∇F.4.1−F.4.4): � = 0.
We now look at eigenvalues of �. Of course, 1 is always an eigenvector with
eigenvalue 0.

Proposition 4.1. For the n = 3,m = 2 examples above where metrics and QLCs
exist (namely, algebras B,D,F) we have

(i) � = 0 if and only if dim = 0.
(ii) If � ≠ 0 and Tr(�) = 1 then � has one mode with eigenvalue 1 and two with
eigenvalue 0

Common phenomena e.g. in dim 3: 



 Cayley graph on ad-stable set generators       of a group

x → xa, a ∈ Cedges:

left-invariant 
1-forms:

eaf = Ra(f)ea, df =
∑

a∈C

∂a(f)ea

∂
a

= Ra − id

θ =

∑

a∈C

ead = [θ, }

Bonus 2 on NCRG: includes discrete geometry e.g.

C X

ea =
X

x2X

!x!xa

X = Z2 × Z2
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in

e
2

a = 0, eaeb + ebea = 0 dea = 0

g = ae1 ⊗ e1 + be2 ⊗ e2

for some functions a,b

It is natural to suppose    
symmetric `lengths’: ∂

1
a = ∂

2
b = 0

g

=> metric

e.g.

Phil. Trans. Roy Soc. (2018)



=> 1-parameter moduli space of QLCs
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in

50 SHAHN MAJID

order 11,12,21,22, the matrix is

⌅ =
�⇧⇧⇧⇧⇤

⇥Q�1 0 0 a(R1��1)
b

0 � ⇥ 1 ⇥ 0
0 � ⇥ ⇥ 1 0

b(R2⇥�1)
a 0 0 Q

⇥⌃⌃⌃⌃⌅
What we have coming out of the geometry is a field of such ‘generalised braiding’
matrices because the entries here are functions on the group. The eigenvalues are⇥1,�⇥,⇥(⇥1)i+jq�1, (⇥1)i+jq at the point (i, j). For the Euclidean metric the �⇥
eigenvalue is 1 but otherwise it depends on how the metric weights vary. Notice
that these ‘generalised braidings’ have a broadly 8-vertex form normally associated
with quantum integrable systems but here arising very naturally out of nothing
but the quantum Riemannian geometry of the square and inhomogeneity of the
metric. The curvature of the connection computed from Lemma 6.1 is non-zero
with contributions both from q � 1 and from nonconstancy of the metric coe⇤cients.
Details will be in [?].

In addition to the above connection, the Maurer Cartan connection given by ⌅ the
flip map and ⇤ = 0 works for the Euclidean metric as the group is abelian and in the
present case can similarly be extended to a 1-parameter family with a parameter
q so as to be compatible with the above symmetric class of metrics. However, this
variant of the above acquires torsion when the metric coe⇤cients are not constant.

Example 6.4. [3, ?] (Riemannian geometry of the permutation group) For G = S3

with its 3D calculus given by 2-cycles it is shown in [?] that there is no bicovariant
choice of ⇤ that is �-compatible, metric-preserving and torsion free. However, just
as we saw with Cq(S2) above, there are solutions if we ask only for the weaker re-
quirement of cotorsion free. In this case there is found a 1-parameter moduli space
of such connection. Likewise in the quantum frame bundle approach there is a
unique torsion free cotorsion free quantum connection that obeys a certain regular-
ity property (basically that the gauge field has values in the associated braided-Lie
algebra of the permutation group)[?]. We now write this connection in the form

⇤ec = ⇥�
b

eb ⇧ ebcb + 1

3
⇤ ⇧ ⇤ = ⇥��1(ec ⇧ ⇤) + 1

3
⇤ ⇧ ⇤.

This is indeed a bimodule connection as in Lemma 6.1, as it must be, namely with

⌅(ea ⇧ eb) = ⇥1
3
�

cd=ab
ec ⇧ ed + eaba ⇧ ea + eb ⇧ ebab.

For a, b 2-cycles in S3 one has aba = bab so one can write the latter expressions
di⇥erently. The last two terms are �(ea ⇧ eb) +��1(ea ⇧ eb). The key observation
if you want to check ⌅(id + ⌅) = 0 for yourself is that �3 = id. *** is it star
compatible***

The Riemann tensor of this connection in current conventions is then

R⇥ec = ⇥�
b

deb ⇧ ebcb = ⇥(d⇧ id)��1(ec ⇧ ⇤)
and there is a canonical lifting map i is computed in [?] as

i(ea ⌅ eb) = ea ⇧ eb ⇥ 1

3
�

cd=ab
ec ⇧ ed
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in

cf `8-vertex R-matrix’

488 8. QUANTUM RIEMANNIAN STRUCTURES

The connection is given as ∇! = ✓ ⊗ ! − �(! ⊗ ✓) for any 1-form !, so that in
particular

∇e1 = (1 +Q−1)e1 ⊗ e1 + (1 − ↵)(e1 ⊗ e2 + e2 ⊗ e1) −
b

a
(R2� − 1)e2 ⊗ e2.

∇e2 = −
a

b
(R1↵ − 1)e1 ⊗ e1 + (1 − �)(e1 ⊗ e2 + e2 ⊗ e1) + (1 −Q)e2 ⊗ e2.

with curvature

R∇e1 = �Q−1R1↵ −Q↵ + (1 − ↵)(R1� − 1) + R2a

a
(R2� − 1)(R2R1↵ − 1)�Vol⊗ e1

+�Q−1(1 − ↵) + ↵(R2↵ − 1) +Q−1
R1b

a
(�−1 − 1)) + b

a
(R2� − 1)R2��Vol⊗ e2

where Vol = e1 ∧ e2, and a similar formula for R∇e2 interchanging e1, e2; R1,R2;
↵,�; a, b and Q,−Q−1. One can discern contributions from q ≠ 1 and from a, b
non-constant. The connection is ∗-preserving if � ○ † ○ � = † by Proposition 8.11
which comes down to the condition

(233) �q� = 1

so that in particular the function Q −Q−1 is pointwise imaginary.
To discuss the Ricci tensor we need a lifting map i and the canonical choice for

our exterior algebra (where ei anticommute) is i(Vol) = 1
2(e1 ⊗ e2 − e2 ⊗ e1). For

the ‘purely quantum’ case where q ≠ 1 and a, b are constant, the metric compatible
torsion free connection and its curvature reduce to

∇e1 = (1 +Q−1)e1 ⊗ e1, ∇e2 = (1 −Q)e2 ⊗ e2

R∇e1 = −(Q −Q−1)Vol⊗ e1, R∇e2 = (Q −Q−1)Vol⊗ e2

as the intrinsic quantum Riemannian geometry of Z2×Z2 with its Euclidean metric.
We find then that

Ricci = Q −Q−1

2
(e1 ⊗ e2 + e2 ⊗ e1), S = 0

which we see is quantum symmetric but does not obey the same reality condition
as the metric if we impose (233) needed for the connection to obey its ‘reality’
condition. This is a purely quantum e↵ect since classically there would be no
curvature when a, b are constant. The opposite ‘classical’ special case where q = 1
but the metric is given by general a, b similarly gives a simpler R∇, and Ricci with
matrix of coe�cients to the left comes out as

(234) Ricci = 1

2

�
��
�

1
b (−

@2a
↵ + �@1b

� ) −@1b
b (↵ +

1
↵ − � − 2)

−@2a
a (� +

1
� − � − 2) 1

a(−
@2a
↵ + �@1b

� )

�
��
�

.

This has both quantum symmetry and ‘reality’ issues but a perfectly reasonable
scaler curvature

(235) S = 1

ab
�−@2a

↵
+ �

@1b

�
� .

We have described two complementary special cases; the general case has features
of both, i.e. two sources of curvature namely from q ≠ 1 and nonconstant a, b.

with curvature e.g.



=> geometric quantum Laplacian
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The Laplacian for the above QLC’s are computed as

�f = ( , )∇(@ifei) = −2

a
@1f − 2

b
@2f + @if( , )∇ei = �Q−1 −R2�

a
�@1f − �Q +R1↵

b
�@2f

using our formula for ∇, the connection property, and @2
i = −2@i. The curvatures

are given by

R∇e1 =�Q−1R1↵ −Q↵ + (1 − ↵)(R1� − 1) + R2a

a
(R2� − 1)(R2R1↵ − 1)�Vol⊗ e1

+ �Q−1(1 − ↵) + ↵(R2↵ − 1) +Q−1 R1b

a
(�−1 − 1)) + b

a
(R2� − 1)R2��Vol⊗ e2

where Vol = e1 ∧ e2, and a similar formula for R∇e2 interchanging e1, e2; R1,R2;
↵,�; a, b and Q,−Q−1 (so that Vol also changes sign). One can discern contributions
from q ≠ 1 and from a, b non-constant. The connection reality condition comes down
to

(7) �q� = 1

so that in particular the function Q −Q−1 is pointwise imaginary.

Next we find the Ricci tensor defined by a lifting map i, for which in our case there
is a canonical choice i(Vol) = 1

2(e1 ⊗ e2 − e2 ⊗ e1). If we write R∇ei = ⇢ijVol ⊗ ej

then
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2
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R1⇢11 R1⇢12
�

as the matrix of coe�cients on the left in our tensor product basis. Applying ( , )
again, we have scalar curvature

S = 1

2
�−R2⇢21

a
+ R1⇢12

b
�

which is invariant under the interchange above. For the simplest case where q ≠ 1
and a, b are constant, the QLCs and their curvature reduce to
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which we see is quantum symmetric but does not obey the same reality condition as
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The general Ricci curvature is more complicated but for q = 1, say, it has values
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� 1
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↵ + �@1b

� ) −@1b
b (↵ + 1
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a (� + 1
� − � − 2) 1

a(−@2a
↵ + �@1b

� ) �
for the matrix of coe�cients. This is in general neither quantum symmetric nor
real in the sense of the metric. For the scaler curvature the general formula is

S = − 1

4ab
�(3 + q + (1 − q)�)@2a

↵
+ (1 − q−1 − (3 + q−1)�)@1b

�
� .
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Finally, it is not obvious what measure we should use to integrate either of these
but if we take measure µ = �ab� = ab (we assume for now the a, b are positive edge
lengths, i.e. the theory has Euclidean signature) and sum over Z2×Z2 then we have

(9) � S = �
Z2×Z2

µS = (a00 − a01)2( 1

a00
+ 1

a01
) + (b00 − b10)2( 1

b00
+ 1

b10
).

independently of q. We consider this action as some kind of energy of the metric
configuration. If we took other measures such as µ = 1 or µ = ��g� = ��ab� then
we would not have invariance under q so the action would not depend only on the
metric but on the choice of ∇.

Next we Fourier transform on Z2 × Z2 to write our results in ‘momentum space’.
We have

1, �(i, j) = (−1)i = (1,1,−1,−1),  (i, j) = (−1)j = (1,−1,1,−1), � = �
@1� = −2�, @2� = 0, @1 = 0, @2 = −2 

as the plane waves and given the conditions we imposed on a, b, we can expand
these in terms of four real momentum space coe�cients as

a = k0 + k1 , b = l0 + l1�.

Then some computation gives the Scalar curvature for q = 1 as

S = 2

(k2
0 − k2

1)(l20 − l21)�(l0 − l1)(k1(k0 + k1) − l1(k0 − k1)), (k0 + k1)(l1(l0 + l1) − k1(l0 − l1)),
(k0 − k1)(k1(l0 + l1) − l1(l0 − l1)), (l0 + l1)(l1(k0 + k1) − k1(k0 − k1))�.

With measure µ = ab as above, this gives

� S = 8� k0k
2
1

k2
0 − k2

1

+ l0l
2
1

l20 − l21
� .

To analyse this we define k = k1�k0 with �k� < 1 corresponding to a > 0 at all points
and similarly for l = l1�l0 and fix k0, l0 > 0 as the average values of a, b so that we
can focus on fluctuations about these as controlled by k, l. In this case the action
becomes

(10) � S = 8� k0k
2

1 − k2
+ l0l

2

1 − l2
� = 8k0(k2 + k4 + k6�) + 8l0(l2 + l4 + l6 +�).

This has a ‘bathtub’ shape with coupling constants k0, l0 and a minimum at k =
l = 0, which makes sense as a measure of the energy of the gravitational field. The
k, l are not momentum variables but the relative amplitude of the unique allowed
non-zero momentum in each direction.

In the Minkowski version, we require say a < 0, b > 0 everywhere. We suppose
k0 < 0, l0 > 0 as the average values and require �k1� < −k0, �l1� < l0 to maintain the
sign. We define k, l as before for the relative fluctuations and regard k̃0 = −k0, l0 as
coupling constants. Now µ = �ab� = −ab for our measure, giving

� S = 8� k̃0k
2

1 − k2
− l0l

2

1 − l2
� = 8k̃0(k2 + k4 + k6�) − 8l0(l2 + l4 + l6 +�).

In either case, if we ignore higher order terms then we have S quadratic in k, l as
for a massless free field in a universe with only one momentum in each direction.
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and quantum Ricci scaler curvature for the antisymm lift,

� = (1,�1,�1, 1)

Choice of measure                    =>                  

measures the `energy’ in the gravitational field. `bathtub’ shape
minimised at a, b constant (`rectangular’ geometry)

Laplacian has generically 3 massive modes but evals becomes 
complex for certain background values
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Figure 5. Nonzero eigenvalues of the Laplacian vs l at fixed k =
0.5, q = l0 = 1 and k0 = ±1 for the two signatures.

k = 0.5. The cross-section passes a narrow region in the k, l plane where two of the
eigenvalues become complex but otherwise they are positive. The remaining mainly
small eigenvalue is zero at l = 0 and q = 1 or k = 0 and q = −1 among possibly other
zeros.

In principle, one can proceed to consider ‘functional integrals’ over any of our
parametrizations of the metric field. Thus for quantum gravity we can consider
integrals of the form

� 1

−1 �
1

−1 dk dl e
ı ∫ S

(this converges when we use the ı in the action, otherwise we have to renormalise
due to divergence at the endpoints), and similar integrations against functions of
k, l to extract expectation values of operators. If we add matter to the action via
the Laplacian then we will have a q-dependence as discussed. We should also in
the full theory integrate over the k0, l0 rather than treating them as constants as
we have above.

6. Conclusions

Sections 1 and 2 were philosophical in nature as a brief introduction to a principle
of ‘representation-theoretic self-duality’ as an ‘axiom of physics’[21, 26, 29] that has
motivated many of my works. We saw how this at an abstract level was one route
to the discovery of the ‘centre’ of a monoidal category, while as ‘quantum Born
reciprocity’ it led to the discovery of an early class of quantum groups. We also
explained how the big picture leads one to the quantum spacetime hypothesis.

Sections 3 and 4 were a brief outline of a formulation of such quantum spacetimes
with curvature, using a bimodule approach developed mostly with Edwin Beggs[2,
3, 5, 4]. Section 5 then proceeded with a new application to a discrete model,
namely quantum Riemannian geometry on a square. Unlike lattice approximations
used in physics, we do not consider the model as an approximation but rather as
an exact finite geometry[27]. We found a 1-parameter family of quantum Levi-
Civita connections for every bidirectional metric and an Einstein-Hilbert action as
a measure of the energy in the gravitational field and independent of the connection
parameter.
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Next we Fourier transform on Z2 × Z2 to write our results in ‘momentum space’.
We have

1, �(i, j) = (−1)i = (1,1,−1,−1),  (i, j) = (−1)j = (1,−1,1,−1), � = �
@1� = −2�, @2� = 0, @1 = 0, @2 = −2 

as the plane waves and given the conditions we imposed on a, b, we can expand
these in terms of four real momentum space coe�cients as

a = k0 + k1 , b = l0 + l1�.
Then some computation gives the Scalar curvature for q = 1 as

S = 2

(k20 − k21)(l20 − l21)�(l0 − l1)(k1(k0 + k1) − l1(k0 − k1)), (k0 + k1)(l1(l0 + l1) − k1(l0 − l1)),
(k0 − k1)(k1(l0 + l1) − l1(l0 − l1)), (l0 + l1)(l1(k0 + k1) − k1(k0 − k1))�.

With measure µ = ab as above, this gives

� S = 8� k0k
2
1

k20 − k21 +
l0l

2
1

l20 − l21 � .
To analyse this we define k = k1�k0 with �k� < 1 corresponding to a > 0 at all points
and similarly for l = l1�l0 and fix k0, l0 > 0 as the average values of a, b so that we
can focus on fluctuations about these as controlled by k, l. In this case the action
becomes

(10) � S = 8� k0k
2

1 − k2 +
l0l

2

1 − l2 � = 8k0(k2 + k4 + k6�) + 8l0(l2 + l4 + l6 +�).
This has a ‘bathtub’ shape with coupling constants k0, l0 and a minimum at k =
l = 0, which makes sense as a measure of the energy of the gravitational field. The
k, l are not momentum variables but the relative amplitude of the unique allowed
non-zero momentum in each direction.

In the Minkowski version, we require say a < 0, b > 0 everywhere. We suppose
k0 < 0, l0 > 0 as the average values and require �k1� < −k0, �l1� < l0 to maintain the
sign. We define k, l as before for the relative fluctuations and regard k̃0 = −k0, l0 as
coupling constants. Now µ = �ab� = −ab for our measure, giving

� S = 8� k̃0k
2

1 − k2 −
l0l

2

1 − l2 � = 8k̃0(k2 + k4 + k6�) − 8l0(l2 + l4 + l6 +�).
In either case, if we ignore higher order terms then we have S quadratic in k, l as
for a massless free field in a universe with only one momentum in each direction.
The higher terms correspond to quartic and higher derivatives in the action from
this point of view.

Finally, we can add matter using the Laplacian above. However, this Laplacian
does depend on q. For example, one can check in the momentum parametrizaton
that

�k0,l0,q;k,l ∼�l0,k0,−q;l,−k
in the sense of the same eigenvalues. In other words, the theory with a, b swapped
is the same but has the negated value of q. These eigenvalues are mostly real
when q is real, leading to q = ±1 as the natural choices. We plot the three non-
zero eigenvalues in Figure 5 for q = 1 and the two signatures, at a typical value
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Figure 5. Nonzero eigenvalues of the Laplacian vs l at fixed k =
0.5, q = l0 = 1 and k0 = ±1 for the two signatures.

k = 0.5. The cross-section passes a narrow region in the k, l plane where two of the
eigenvalues become complex but otherwise they are positive. The remaining mainly
small eigenvalue is zero at l = 0 and q = 1 or k = 0 and q = −1 among possibly other
zeros.

In principle, one can proceed to consider ‘functional integrals’ over any of our
parametrizations of the metric field. Thus for quantum gravity we can consider
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(this converges when we use the ı in the action, otherwise we have to renormalise
due to divergence at the endpoints), and similar integrations against functions of
k, l to extract expectation values of operators. If we add matter to the action via
the Laplacian then we will have a q-dependence as discussed. We should also in
the full theory integrate over the k0, l0 rather than treating them as constants as
we have above.
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to the discovery of the ‘centre’ of a monoidal category, while as ‘quantum Born
reciprocity’ it led to the discovery of an early class of quantum groups. We also
explained how the big picture leads one to the quantum spacetime hypothesis.

Sections 3 and 4 were a brief outline of a formulation of such quantum spacetimes
with curvature, using a bimodule approach developed mostly with Edwin Beggs[2,
3, 5, 4]. Section 5 then proceeded with a new application to a discrete model,
namely quantum Riemannian geometry on a square. Unlike lattice approximations
used in physics, we do not consider the model as an approximation but rather as
an exact finite geometry[27]. We found a 1-parameter family of quantum Levi-
Civita connections for every bidirectional metric and an Einstein-Hilbert action as
a measure of the energy in the gravitational field and independent of the connection
parameter.

best seen in momentum mode expansion:

converges  … finite quantum gravity?

euclidean minkowski


