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The Penrose inequality

Area of the Schwarzschild horizon

A = 4π(2M)2 = 16πM2

hence

M =

√
A

16π
.

For the Kerr horizon

A = 8πM(M +
√

M2 − a2)

hence (the Penrose inequality)

M ≥
√

A
16π

.

J. Tafel (University of Warsaw) The Penrose inequality for an axially perturbed Schwarzschild black hole
5-th PoToR conferenceWojanów 2018 joint work with J. Kopiński 2
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The Cauchy data with a horizon

If
a future singularity is surrounded by the event horizon
(physically realistic data, the cosmic censorship conjecture)
configuration tends to a stationary state

then the no-hair theorem etc. (almost) imply that

the end state is the Kerr metric with M∞ and A∞
M∞ ≤ M (because of radiation)
A∞ ≥ A (BH thermodynamics)

Conclusion: the Penrose inequality should be satisfied on the initial
surface
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Vacuum initial data with a horizon

Constraints on gij ,Kij

∇i
(
K ij − g ijH

)
= 0

R + H2 − K 2 = 0

where H = K i
i and K 2 = KijK ij .

Marginal outer trapped surface (MOTS) with unit normal vector ni and
mean curvature h = ∇ini :

θ+ = H − Knn + h = 0

θ− = H − Knn − h ≤ 0 .

If H = h = 0 then the Penrose inequality follows from the Hamiltonian
constraint (Geroch, ...., Huisken and Ilmanen).
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The Lichnerowicz equation

Let H = ∇iK ij = 0 and S0 be a closed surface. Then

g′ij = ψ4gij , K ′ij = ψ−2Kij , ψ > 0

satisfy the constraint equations if ψ satisfies the Lichnerowicz equation

4ψ =
1
8

Rψ − 1
8

K 2ψ−7 .

If, in addition, ψ satisfies the boundary condition on S0

ni∂iψ +
1
2

hψ − 1
4

Knnψ
−3 = 0

then S0 becomes MOTS (D. Maxwell, extra conditions required).
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Small perturbations of the Schwarzschild data

As the preliminary data we take
the Schwarzschild initial data on t = const

g =
dr2

1− 2M
r

+ r2(dθ2 + sin2 θdϕ2)

a nontrivial axially symmetric solution K of the momentum
constraint with H = 0 (Conboye and O’Murchadha)
the Schwarzschild horizon r = 2M as the surface S0

The Penrose inequality, if true, should follow from the Lichnerowicz
equation and the boundary condition.
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Approximation up to K 2 : ψ = 1 + ψ1 + ψ2

4ψ1 = 0 , ni∂iψ1 =
1
4

Knn on S0 (1)

4ψ2 = −1
8

KijK ij , ni∂iψ2 = −3
4

Knnψ1 on S0 (2)

Total energy (after the conformal transformation):

E = M − 1
2π

∫
S∞

∂rψdσ.

Area of the horizon:
A =

∫
S0

ψ4dσ.
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An integration of the Lichnerowicz equation yields

E = M +
1

16π

∫ ∞
S0

K 2dV − 1
8π

∮
S0

Knn(1− 3ψ1)dσ

and a more subtle integration yields a similar expression for A.

The Penrose inequality is equivalent to∫ ∞
2M

r2〈K 2〉dr + 8M3〈Knn〉2 − 12M〈ψ2
1〉 ≥ 0 (3)

where 〈...〉 denotes integral over the unit sphere and ψ1 depends on
Knn via the Neumann problem.

Problem
Given Knn ≥ 0 on S0 what is minimal value of the first integral in (3).
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Parametrization of axially symmetric solutions Kij

Such solutions of ∇iK ij = 0 depend on 2 functions Q,Q′ of r and θ.

Q′ does not appear in Knn and generates terms enlarging K 2.
Dependence on Q

Krθ = − Q,r

r sin θ
, Krr =

Q,θ

r3 sin θ

(Kθθ sin2 θ),θ = (rQ,r ),r sin θ − cos θ
r

Q,θ

Kϕ
ϕ = −K r

r − K θ
θ .

A convenient form of Q:

Q = sin θq,θ − a cos θ , a = const

where q is regular and q,r is bounded at∞.
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Expansion into Legendre polynomials Pn(z), z = cos θ:

q = Σn=1qn(r)Pn .

Kθθ creates problems in 〈K 2〉.

Miracle No 1

Kθθ +
1
2

r2Krr = Σn=2
(
(rqn,r ),r −

1
2

n(n + 1)
qn

r
)
P̃n ,

where polynomials

P̃n =
1

n + 2
(nPn −

2
n − 1

Pn−1,z)

are orthogonal.

Hence 〈K 2〉 = ΣFn(qn) , Fn ≥ 0 and we can look separately for a
minimum of each integral ∫ ∞

2M
r2Fndr .
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Miracle No 2
Variation of integrals leads to fourth order linear ordinary equations for
qn, n ≥ 2 which can be exactly solved (with a help of Mathematica).

Solutions read qn = an + bn
rn + cn

rn+1 where constants are defined by Pn
components of Krr on the horizon.

Now minimal value of the integrals can be calculated. The Penrose
inequality folows except the case q = (br + c

r ) cos θ (then the 4-th
order approximation in K yields the inequality).

Main result
The Penrose inequality is preserved under a small addition of axially
symmetric exterior curvature to the Schwarzschild data.

First (to my knowledge) proof with horizon which is not a minimal
surface.

Generalizations: nonsymmetric K , nonspherical horizons (?)
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/ 11



Miracle No 2
Variation of integrals leads to fourth order linear ordinary equations for
qn, n ≥ 2 which can be exactly solved (with a help of Mathematica).

Solutions read qn = an + bn
rn + cn

rn+1 where constants are defined by Pn
components of Krr on the horizon.

Now minimal value of the integrals can be calculated. The Penrose
inequality folows except the case q = (br + c

r ) cos θ (then the 4-th
order approximation in K yields the inequality).

Main result
The Penrose inequality is preserved under a small addition of axially
symmetric exterior curvature to the Schwarzschild data.

First (to my knowledge) proof with horizon which is not a minimal
surface.

Generalizations: nonsymmetric K , nonspherical horizons (?)

J. Tafel (University of Warsaw) The Penrose inequality for an axially perturbed Schwarzschild black hole
5-th PoToR conferenceWojanów 2018 joint work with J. Kopiński 11
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