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Non-quantum limit of quantum gravity and Deformed Special Relativity

+ h — 0 regime of Quantum Gravity

if the limit is taken keeping % = const, QG effects are governed by an energy scale

hed hGG
Ep = i%const Ip = 6—360

+ Because we can define an energy scale but not a length scale, it is natural to look at physics from
the point of view of momentum space rather than spacetime (focus on relativistic symmetries)

+ We can construct a deformation of the Poincaré algebra, such that the energy scale becomes a
second relativistic invariant besides the speed of light -Amelino-Camelia, IMPD 2002, PLB 2001
eKowalski-Glikman, [JMPA 2001
*Magueijo, Smolin, PRL 2002, PRD 2003

+ Further motivations:

+ Indications that the effective action of matter coupled to 2+1 quantum gravity describes

matter fields subject to deformed Poincaré symmetries . . . oo L ben 500,
(see talk by G. Rosati later today) *Freidel, Livine PRL 2006
*Cianfrani, Kowaslki-Glikman, Pranzetti, Rosati, PRD 2016

+ Indications that the spacetime symmetries emerging in the Minkowski regime of LQG are
described by a deformed Poincaré group

*Bojowald, Paily, PRD 2013 eBrahma, Ronco, Amelino-Camelia, Marciano, PRD2017
*Amelino-Camelia, da Sllva, Ronco, Cesarini, Lecian PRD2017 *Brahma, Ronco, PLB 2018




Poisson-Hopf algebra description of relativistic symmetries

+ Hopf algebras provide a consistent mathematical framework to deform special-relativistic

symmetries and introduce an invariant energy scale . Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B

1992
*S. Majid, H. Ruegg, Phys. Lett. B 1994
/. Kowalski-Glikman, S. Nowak 2002-2003

+ in the semiclassical approximation, the symmetries of phase space are described by Poisson
brackets satisfying the same relations as the commutators of the Hopf algebra

+ k-Poincaré is the most used Hopf algebra to develop phenomenology associated to deformed
Poincaré symmetry, in particular focussing on energy-dependent time of travel of relativistic

particles
*Amelino-Camelia, Kowalski-Glikman, Mandanici,
Procaccini, Int. J. Mod. Phys. A20 (2005)

+ opportunities for phenomenology arise for example in the study of the propagation of very high

energy particles (photons, neutrinos) from astrophysical sources
(see talk by G. Amelino-Camelia earlier today)

*Amelino-Camelia, Ellis, Mavromatos, Nanopoulos, Sarkar,
Nature 393 (1998)

M. Ackermann et al. (Fermi GBM/LAT), Nature 462(2009)

*Xu, Ma, Astropart.Phys. 82 (2016)

Amelino-Camelia, D’Amico, Rosati, Loret, Nat.Astron. 1 (2017




k-Poincarée Poisson-Hopf algebra

+ algebra of symmetries in bicrossproduct coordinates (1+1 dimensions)

+ first Casimir

+ coproducts and antipodes

o~

{P1, Py} =0

(N, Po} =P [€:lwi]
1—e 2P0 ¢ _, koo By

{N7 Pl} _ 2€ o 57)1

2 [P\’
Z sinh (7())) — GEPOP%

A(Py) =Po1+1&® Py S(Py) = —Po
A(P)) =P @1+e ™0 @ P S(Py) = 7P
AN)=N@L+e P QN S(N) = —ePoN

*Lukierski, Nowicki, Ruegg, Phys. Lett. B 293 (1992)
Lukierski, Ruegg, Nowicki, Tolstoi, Phys. Lett. B 264 (1991)
*Majid, Ruegg, Phys.Lett. B334 (1994)




k-Poincareé representation on momentum space

+ because spacetime translations close a subalgebra, they can be represented as an algebra of

functions over momentum space *Kowalski-Glikman, Nowak, CQG 2003
*Gubitosi, Mercati, CQG 2013

+ correspondence between structures of the Hopf sub-algebra and of the momentum space:

translations coordinates over manifold
Pu(p) Py
change of basis of the algebra diffeomorphism

"""""""""""""""""""""" coproductmap  composition law of momenta

AP,(p,q) (p®q),
""""""""""""""""""""""" antpode . inversion

S(Pu)(p) (©p)

""""""""""""""""""""""" coassociativity . associativity of composition rule

(A®Id)oA=(Id®A)oA pdgDk=p& (k)




Geometric properties of the k-Poincaré momentum space manifold

+ k-Poincaré momenta live on a (portion of) de Sitter manifold

sKowalski-Glikman, Nowak, CQG 2003
sKowalski-Glikman PLB 2002

*Gubitosi, Mercati, CQG 2013
*Amelino-Camelia, Arzano, Kowalski-Glikman,
Rosati, Trevisan, CQG 2012

change to a basis where the algebra is trivial (coproducts still nontrivial)

Py (po,p1) = pre'?°

cosh (¢ 12
Py(po,p1) = lg Po) — ]291 etPo

these new generators satisfy the relation

1
P; — P} — P} = — %
defining relation of a 1+1 dimensional de Sitter manifold

embedded in a 2+1 Minkowski manifold

the energy scale is playing a crucial role in the geometry of
momentum space, since it defines its radius of curvature




Geometric properties of the k-Poincaré momentum space manifold

+ k-Poincaré momenta live on a (portion of) de Sitter manifold

sKowalski-Glikman, Nowak, CQG 2003
sKowalski-Glikman PLB 2002

*Gubitosi, Mercati, CQG 2013
sAmelino-Camelia, Arzano, Kowalski-Glikman,
Rosati, Trevisan, CQG 2012

change to a basis where the algebra is trivial (coproducts still nontrivial)

sinh (£ {py
Pofpo, ) = S0P P e

Py (po,p1) = pre'?°

cosh (/¢ Ip?
Pulpo, pr) = “Z0R0) P

these new generators satisfy the relation

1
P; — P} — P} =

2
defining relation of a 1+1 dimensional de Sitter manifold
embedded in a 2+1 Minkowski manifold

the energy scale is playing a crucial role in the geometry of
momentum space, since it defines its radius of curvature

+ bicrossproduct coordinates only cover half of the manifold:




Curved momentum space and kinematics of free particles

+ the first Casimir of the algebra gives the mass-shell condition

2 . Po\\~ 9 2
o= (G (552)) =Pt = (B () - it
. 1 — e_epO
in the massless case : pi1(po) = ;

+ the dispersion relation of free particles is invariant under boosts

CoN]=0 e @Sinh(%))z_e%pgzw




Curved momentum space and kinematics of free particles

+ the first Casimir of the algebra gives the mass-shell condition

2 . ‘P 2 9 2
Co = (Z sinh (70)> — PP} el m2= (Z sinh (%)) — ePop]

in the massless case : p1(pg) =

+ the dispersion relation of free particles is invariant under boosts
p 2
[C%N] =0 -’ (% sinh (%)) — eepép? = m?

+ from the point of view of the momentum space:

the dispersion relation is given by the curves of constant geodesic distance from the
origin of momentum space

invariance of the dispersion relation is due to the invariance of the
line element dsfj = dp3 — e*Podp?

/

— —|— /

p? Po €p11_6—2€p0 aﬁ (dsg)/ — dp62 . 62£p0dp32 = d8229
p1 = p1+¢§ ( 57 — §p1)

( boosts are isometries of the k-Poincaré momentum space)




k-Poincaré particle kinematics

+ spacetime is defined via a classical phase-space construction (no quantum effects in the relative
locality limit) - coordinates are the objects that define a trivial symplectic structure together with

momenta: {p1,po} =0
{z',2°} =0
{z",pu} =0,

+ representation of the algebra of symmetries on phase space Py = pg

P1=p1

1 —e 2P0 ¢
N:p1£€0+( 2€ —§p%>$1

+ evolution of phase space coordinates is given by the a Hamiltonian construction

1
jjo — {Ce,:EO} _ Z (eﬁpo . e—ﬁpo) . fp%eepo

jjl — {Cﬁaxl} — 2p1 eﬁpO.

.ji'l

+ massless coordinate velocity depends on the energy of the particle: v = — = —etPo

S

. . 1 -1 ep0(,0 _ =0
massless particle worldline: -1 =—eP(z°—T)

+ same time delays obtained with ‘k-Minkowski coordinates’” if accounting for the deformed action of
translations upon them

0 1 1
Y= 2! XXy =
{XO p1} = —¥Ip *Amelino-Camelia, Barcaroli, Gubitosi, Loret,
0 0 1 )
X =x —{Lrp Class.Quant.Grav. 30 (2013)

0
{x",po} =0 «Gubitosi, Barcaroli, PRD 93 (2016)




Particle trajectories and relativity of locality

worldlines of two massless particles emitted simultaneously with different energies

+ using coordinates dual to momenta:

+ using ‘k-Minkowski coordinates’:

+ measurements done locally (i.e. at spatial
origin of each observer) do not depend
on choice of coordinates: Alice emits the
particles at the same time and Bob
detects then with a time delay

Az® = gY (e_gApo — 1)

worldlines seen by Alice
(local at emission)

worldlines seen by Bob
(local at detection) A

x1A Bob ,_Bob

s Y

Alice |7 Alice

> p
XO
1 fpo 0 0 0 0 0
Ty = -7y leg = 7;»:1:114::1:114—&1
zly = —ePogh ry = Tabry=2,4—a
A
Bob
x1A - Bob o ° .
. A ) 0
Alice L+ Alice
. > P PR
xO
1 -1 _ .0 =0 0 0 0 1
X —X =X —X Xg=Ta>Xa=Xa—a +alp

*Amelino-Camelia, Loret, Rosati, PLB 2011
*Amelino-Camelia, Barcaroli, Gubitosi, Loret, CQG 2013




de Sitter spacetime - symmetries, phase space and particle kinematics

+ line element in comoving coordinates

ds® = (dz°)? — p2H " (da')?

+ algebra of symmetries (co-algebra sector is trivial) ~ {Po,P1} = HP;
{Po,N} = Pi—HN
{Pi,N} = P

+ mass Casimir Cqs = P5 — P; +2HNP,

+ representation of symmetry generators:

{z' 2"} = 0, Po = po— Hz'py
{x'uapy} — _557 "» L= P1 o
—2Hcx
{pu-p}= 0. N = alpo+m (1_62H B %@1)2)

+ the massless condition Cgs = Orelates energy and spatial momentum, encoding energy redshift

Po = |p1 |€_HmO

+ particles worldline

- 1 1 —2Hz’ N | —Hz° —Hz"
T {Cds,az } = —2e D1 1, o -1 _/ A e e
. _ 7l = “del =
) a* €T (gj ) T y =0 €T

70 {Cas, 2"} = 2po




Duality between de Sitter spacetime and de Sitter momentum space

de Sitter spacetime de Sitter momentum space
spacetime metric momentum space metric
0 i
ds? — (dQZO)z _ p2Hw (dx1)2 dSZQ) _ dp(2) . €2€p0dp%
worldline dispersion relation
T e 1 — e *tpo
dispersion relation worldline
generators of translations ‘k-Minkowski coordinates’
Pi = m x' =
Po = po— Hz'p X" =z — lz'p

Amelino-Camelia, Barcaroli, Gubitosi, Loret, CQG 2013

+ related to the fact that in Hopf algebras noncommutativity induces curvature in the dual space,
and viceversa

Majid ArXiv: hep-th/0604130




Duality between de Sitter spacetime and de Sitter momentum space

+ the duality is even more apparent when looking at the algebra of the full phase space

de Sitter spacetime

{x'uvpv} — _55

{le’xO} = 0

(N, 2%} = =t
Wt} = =g dy
{p07p1} = 0 . |
{po,N} = pre 28

{p1,N} = po— Hpiz'

{Po,P1} = HP;
{Po,N} = Pi1—HN
{Pi,N} = Py

the Casimir of the algebra{ N\, Py, P }
determines the dispersion relation

the Casimir of the algebra {\, 2", z'}
determines the worldline
(and is the Newton-Wigner operator)

de Sitter momentum space

{pl/v :C'u} — _5'3

{P1,Po} = 0

{N7 PO} - 7)1 —20P

{N, Pl} — 1_626 - - %P%
{xO) wl} = 0

(29N} = zle 2o
{fClaN} = z _&Ulpl
xX’x'y = &

(XN} = x'—N
{x*, N} X"

the Casimir of the algebra { N, pg, p1}
determines the dispersion relation

the Casimir of the algebra {\/, x*, x*}
determines the worldline
(and is the Newton-Wigner operator)




Putting spacetime and momentum space curvature together

+ opportunities for phenomenology arise in contexts where spacetime curvature is actually non-
negligible (early universe, propagation of photons from Gamma-ray Bursts etc...)

how to implement deformed relativistic transformations over a curved spacetime?

+ extension of results found in kP to curved spacetime is non-trivial - interplay between effects of
curvature in spacetime and in momentum space

*Amelino-Camelia, Smolin, Starodubtsev, Class. Quant. Grav. 21(2004)

sMarciano, Amelino-Camelia, Bruno, Gubitosi, Mandanici, Melchiorri, JCAP
1006 (2010)

+ geometrically, in curved ST/flat MS models the MS is the cotangent space of the ST manifold at a
point; in curved MS/flat ST models ST is the cotangent space of the momentum manifold at a given

momentum ‘point’ - how does this generalise to cases with curvature on both sides of the phase
space’?

+ in the context of Hopf algebras, one can study a k-deformation of the de Sitter algebra

* Lukierski, Ruegg, Nowicki and Tolstoi, Phys. Lett. B 264 (1991)
* Ballesteros, Herranz, del Olmo, Santander, J. Phys. A: Math. Gen. 26 (1993)
* Ballesteros, Herranz, del Olmo, Santander, J. Phys. A: Math. Gen. 27 (1994)




Preliminaries: revisiting the k-Poincaré momentum space construction

+ algebra in bicrossproduct coordinates (2+1 dimensions) [z — (= 1]
K
{J, P} = P, {J, Pa} = — P, {J, P} =0,
{J,Ki} =Ko, {J K2} =-K;, {Ki, Kz}=—J,
{PO7Pa}:Oa {Paapb}:()7 {Ka7PO}:Pa
1 z
K., Py} = — (1 —e 2+ Z P?) - 2P, P,
{a7 b} 5ab(22( € )"‘2 ) _IqL7h 4
+ coproducts A (P) = Pe1+1®P,,
A.(Ps) = P,®1+e*@P,
AJ) = JR1+1®J,
Az(Ka) — Ka®1_|_€—zP0 ®Ka+zeabcpb®Jc-

+ Poisson algebra dual to translations

X% X' =—X",  [X,X7]=0

obtained by dualizing the cocommutator map (its form can be read off from the first-order

deformation of the coproducts of P) and gives the k-Minkowski spacetime algebra




Preliminaries: revisiting the k-Poincaré momentum space construction
+ algebra in bicrossproduct coordinates (2+1 dimensions) [z _ l]

{J Pl} PQ, {J PQ}_ —Pl, {J,PQ}ZO,
K=ty (K1, K} = —

+ coproducts = PO R1+1® Po, |
= P, @1+e‘zPO®Pa,
Z(Ka) /N (X)l—l—_zj‘DO QX Ky + z€qpePp @ Je .

+ Poisson algebra dual to translations

X% X' =—X",  [X,X7]=0

obtained by dualizing the cocommutator map (its form can be read off from the first-order

deformation of the coproducts of P) and gives the k-Minkowski spacetime algebra

this construction is possible because the translations close a Hopf sub-algebra




Preliminaries: revisiting the k-Poincaré momentum space construction

+ the generic element of the dual Poisson-Lie group is constructed via exponentiation, with

coordinates on the group p,,

G*(po, p1,p2) = exp (p1p(X 1)) exp (p2p(X?)) exp (pop(X")) ,

the coproducts of £, can be re-obtained from the group law of G" upon identifying P, = p,,
a different choice of ordering of the exponentials would result in a different choice of basis of the

translation generators

+ 4d representation of X*

p(X7) =

_ o O O
o O O O
o O O O
oo O

+ then the group element reads

cosh(zpg) + 5 €

G*(p) =

1 e? Po 22p2

sinh(zpg) —% 2P0 22 2

o o = O
S O =

ZP1
1

0

—ZP1

0 O 0O 0 1 0
0 1 oo oo 0o o
00| PAXI=21 0 g 0
0 O 0 0 —1 0
zpe  sinh(zpg) —|—% e?Po 22 p?

0 e*Po zpy

1 e*Po zpo

—zpa  cosh(zpg) — % 2P0 22 b2




Preliminaries: revisiting the k-Poincaré momentum space construction

+ the k-Poincaré momentum space is generated by the orbits of the dual Poisson-Lie group G
acting on the ambient Minkowski space that pass through the point (0,0,0,1):

G*-(0,0,0,1)T = (S, S, Sa, S1)T

+ where we recover the coordinates defined earlier:

So = sinh(zpg) + 5 €*P0 22 p?,
S, = emap,

Sy = e*Po <z P2,

Sys = cosh(zpg) — 3 €*P0 22 p?

such that —S2 4+ S7 4+ S5 + S5 =1 and Sy + Sy = e*P° > ()

+ this defines half of a 2+1 dimensional de Sitter manifold

(note the crucial role of the coproducts in the construction)

* |. Kowalski-Glikman, Int. J. Mod. Phys. A 28 (2013)
* Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB773 (2017)
* Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD97 (2018)




k-(anti) de Sitter algebra

+ in the k-(anti) de Sitter algebra we see explicitly at work the nontrivial interplay between the
‘quantum’ deformation parameter z and the cosmological constant A, that is a classical
deformation parameters (A > 0 de Sitter, A < 0 anti de Sitter)

+ algebra in 2+1 dimensions (bicrossproduct basis) » Ballesteros, Herranz, del Olmo, Santander,
J. Phys. A (1994)
{J7PO}:O7 {J7P1}2P27 {J7P2}:_P17
(LK} =K {JKa}=-K, {K K}=-2)
{Po, P} = —A Ky, {Ry, P2} = —A Ky, {P17P2}:A%7
(K1, Py} = Py, (K, Py} = Py,
{PQ,Kl} = Z <P1P2 — AKlKQ) {Pl,Kz} = Z <P1P2 — AKlKQ) ,
1 o, z zA
{K1, Py = o (cos(QZ\/KJ) —e? PO) +3 (P§ — P?) — - (K3 — K3),
1 z zA\
{2, P2} = o (cos(2z\/KJ) - 6—22130) +5 (PE - P§) - ~ (K - K3),

+ coproducts
P AP = R@1+10PR, AWJ)=Jol+18/

sin(zv/AJ)
A
sin(zv/AJ)
N
sin(zv/AJ)
A
sin(zv/AJ)
A

A(P) = PL®@cos(zVAJ)+e @ P+ AKy ®

A(Py) = Po@cos(zVAJ)+e @ P —AK| ®

A(Kl) = K1 ® COS(Z\/KJ) + B_ZPO QK1+ PP ®

A(K3) = Ky @ cos(zVAT)+e P @ Ky — P ®




k-(anti) de Sitter algebra

+ in the k-(anti) de Sitter algebra we see explicitly at work the nontrivial interplay between the
‘quantum’ deformation parameter z and the cosmological constant A, that is a classical
deformation parameters (A > 0 de Sitter, A < 0 anti de Sitter)

+ algebra in 2+1 dimensions (bicrossproduct basis) » Ballesteros, Herranz, del Olmo, Santander,
J. Phys. A (1994)
{J,PO}:O, {J7P1}2P27
{']7 Kl} — K27 {J7 KQ} — _Kla 2
{Po, P} = —AKy, {Py, R} =—-AKy,
1Ky, B}y = P, {Ky, Po}® Lo
{PQ, Kl} =z <P1P2 — AKlKQ) {Pl, KQ} =z (PiPQ — AKlKQ) .
1 A
[Ki, P} = o (COS(QZ\/KJ) . 6—22130) + % (P} - P?) - % (K2 - K?),
1 A
{Ka P} = 5 (cos(2z\/KJ) _ 6—22130) + % (P2 - p2) - % (K2 - K2),

+ coproducts

i A
A(K)) = Ky @ cos(zVAS) + e "D @ K| + P, ® Sm(Z\/_J),
VA
A(KQ) = Ky ® COS(Z\/KJ) + €_ZP0 ® Ko — P ® Sln(f/KAJ),

+ spacetime translations do not close a sub algebra any more




k-(anti) de Sitter algebra - dual Lie algebra and construction of the momentum space

+ because in particular the coalgebra sector of translations does not close, the dual Lie algebra
needs to be constructed with respect to the whole set of k-de Sitter generators

XY X1 = -2 X1, XY X?] = -2 X2, Xt X% =0,
XV, LY = -z L1, XV, L] = -z L2, LY, L?] =0,

R, X% = —zL%, R, LY = 2zA X2, LY X% =0,
R, X' =217 R, L} = —2AX"1, L2, X1 =0,
R, X" =0, LY, X1 =0, L2, X?) = 0.

X are dual to translations P, R is dual to the rotation J and L are dual to boosts K

+ the generic element of the corresponding dual Poisson-Lie group G* is again defined via
exponentiation

Gj = exp (0p(R)) exp (p1p(X1)) exp (p2p(X7?)) exp (x1p(L")) exp (x2p(L?)) exp (pop(X?))

however now the local group coordinates include ‘generalized momenta’ ), y; , associated to
boosts and rotations, besides spacetime translations

as seen before, the coproducts and algebra of the g-de Sitter algebra can be recovered from the
group law of G upon identifying P, =p,, xi=K;, 0=J

+ the orbits of the dual Poisson-Lie group G* acting on the ambient Minkowski space that pass
through the point (0,0,0,0,0,1) generate the momentum space of k-de Sitter and are given by
G*-(0,0,0,0,0,1)" = (S0, S1, 52, 55,54, 95)" .

*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017
*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018




k-de Sitter algebra - properties of the generalised momentum space

+ the orbits are parameterised by

. L,

So = sinh(zpg) + = 5 e?Po ;2 (p1 —|—p2 + A (Xl + XQ))
S1 = ez (cos(z VAO)p1 — VA sin(z VAO) x2),
Sy = €*Poz(cos(z \/KH) o + VA sin(z \/KQ) X1),
S3 = €*Poz(—sin(z \/Kﬁ)pz + VA cos(z \/KH) X1),
Sy = €*Pz(sin(zVAO) p1 + VA cos(zVAB) xa),

1
S5 = cosh(zpg) —26’”90 2( %—i—p%#—/\(x%—l-x%))

these coordinates satisfy the conditions — S5 + St + 85 + 55 +Sf + 5§ =1 and Sy + S5 = €*P° > 0

this is the embedding of (half of) a 4+1 dimensional de Sitter space into the ambient 5+1
dimensional Minkowski space, Mg,

(note symmetric role of spatial momenta and boosts)

*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017
*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018




k-de Sitter algebra - properties of the generalised momentum space

+ the orbits are parameterised by

So = sinh Zpol_ﬂ;?g(p +p2+A (xi+x3))

e“P0z (cos(z \/70)}91 \/Ksm( \/79)X2,\

e“P0z (co ( VAO) p2 + VA sin(z VA 0) x1),

2 (—sin(z VA O) py + VA cos(z VA D) x1),

z (si ( VAB) p1 4+ VA cos(zVAB) x2)u
1 _

these coordinates satisfy the conditions — S5 + St + 85 + 55 +Sf + 5§ =1 and Sy + S5 = €*P° > 0

this is the embedding of (half of) a 4+1 dimensional de Sitter space into the ambient 5+1
dimensional Minkowski space, Mg,

+ the momentum space has a lower dimensionality compared to the number of generators
because rotations generate the isotropy group of the point (0,0,0,0,0,1).
Taking this into account the full momentum space is Myg, x S*

*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017
*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018




k-de Sitter algebra - properties of the generalised momentum space

+ the orbits are parameterised by

So = sinh Zpol_ﬂ;zéf(p +p2+A (xi+x3))
e“P0z (cos(z \/70)}91 \/Ksm( \/79)X2,\
e*P0z (co ( VA ) pz + VA sin(z VAO) x1),

z (—sin(z VA0) pa + VA cos(z VA B) x1),
z (si ( \/Ke)pl—F\/KCOS(Z\/K@)XQ/ ;

(XF+x3))

these coordinates satisfy the conditions — S5 + St + 85 + 55 +Sf + 5§ =1 and Sy + S5 = €*P° > 0

this is the embedding of (half of) a 4+1 dimensional de Sitter space into the ambient 5+1
dimensional Minkowski space, Mg,

+ the momentum space has a lower dimensionality compared to the number of generators
because rotations generate the isotropy group of the point (0,0,0,0,0,1).
Taking this into account the full momentum space is Myg, x S*

+ this allows us to write the dispersion relation associated to the Casimir in a simplified way

sin(zv/Af)
VA

2
C, = ) [cosh(zpo) cos(zvV/AB) — 1} —eP0 (pf 4+ p3 — A(X3 + x3)) cos(2VAO)—2 A e*P° Rs,

" L . [R3 = €3pcXpPe]
=0 —=Pp C.=—[cosh(zpg) — 1] — e (p? +p} — A3 +x3))

zZ

*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017
*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018




Conclusions and outlook - 1

+ Simultaneous presence of curvature in ST and MS intertwines spacetime translations and boosts. Then the
momentum space is the manifold is generated by the orbits of the dual Lie group of both translations and
boosts. It is a manifold of ‘generalised momenta’: those associated to translations+ "hyperbolic momenta’
associated to boosts

+In 2+1 dimensions, the resulting manifold is half of a de Sitter space with (4+1) dimensions (#of
translations+# of boosts). Rotations are the isometry subgroup of the origin of the momentum space.

+These results can be generalised to g-anti de Sitter algebra, obtaining a manifold defined by the quadratic
constraint:

— S+ SF+ 855 -85 -Si+S5:=1

+ One can also look at higher dimension - the main nontrivial additional ingredient are rotations, which
close a deformed sub algebra with a privileged direction

Az(Jg) = J3®1+1® J;3,
AL(1) = S@eVB 41w,
AL(J) = SV 41w,

still, one can construct the generalised momentum space as half of a 6+1 dimensional de Sitter manifold
and the rotation sector only has the role of generating the isotropy subgroup of its origin (0,0,0,0,0,0,0,1)

*Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018




Conclusions and outlook - 2

+ Understanding the role of rotations allows us to write the Casimir in a simplified form

9
C. = — [cosh(zpo) — 1] — €™ (pT +p5 — AXT +x3))

which in principle would allow us to study the phenomenology in a similar fashion as the kP case,
investigating relative locality effects in a curved spacetime.

+ This has been done already in the 1+1 case, which however is trivial from the point of view of the
momentum space (translations and boosts separate). Still, some interesting features already emerged:

the dispersion relation and worldlines show explicitly the interplay between curvature in ST and MS,
already at first order in the deformation parameters:

1
Po = —P1 (1 — Ha® — Ip (5 - Hx0>>

S = (2 21— lpy) %H ((2°)2 — (2°)2) (1 — 2¢py)

these features remain in observable properties, such as the time delay in the travel time of photons with
different energies and the energy redshift of a photon traveling between far away observers:

Az® = La®Apo(1 + Ha)

14
Apo = —Hp()ZUO(l —1— 5])0)
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