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The Penrose inequality

Area of the Schwarzschild horizon
A = 4n(2M)? = 167 M?

hence
A

M=\/—
167

For the Kerr horizon

A=8rM(M + /M2 — 22)

hence (the Penrose inequality)

/A
> —_— .
M= 167
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The Cauchy data with a horizon

If

@ a future singularity is surrounded by the event horizon
(physically realistic data, the cosmic censorship conjecture)

@ configuration tends to a stationary state
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The Cauchy data with a horizon

If

@ a future singularity is surrounded by the event horizon
(physically realistic data, the cosmic censorship conjecture)

@ configuration tends to a stationary state

then the no-hair theorem etc. (almost) imply that

@ the end state is the Kerr metric with My, and A
@ M., < M (because of radiation)
@ A, > A (BH thermodynamics)
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The Cauchy data with a horizon

If

@ a future singularity is surrounded by the event horizon
(physically realistic data, the cosmic censorship conjecture)

@ configuration tends to a stationary state

then the no-hair theorem etc. (almost) imply that

@ the end state is the Kerr metric with My, and A
@ M., < M (because of radiation)
@ A, > A (BH thermodynamics)

Conclusion: the Penrose inequality should be satisfied on the initial
surface
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Vacuum initial data with a horizon

Constraints on gj;, Kj

Vi(KT - g'H) =0
R+H? _K2=0

where H = K’ and K? = K;K".
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Vacuum initial data with a horizon

Constraints on gy, Kj;

Vi(KT - g'H) =0
R+H? _K2=0

where H = K. and K2 = K;K".

Marginal outer trapped surface (MOTS) with unit normal vector n' and
mean curvature h = V;n':

9+:H_Knn“|—h:0

H_ZH—Knn—hSO
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Vacuum initial data with a horizon

Constraints on gy, Kj;
Vi(K'—g"H) =0
R+H?>-K2=0

where H = K. and K2 = K;K".

Marginal outer trapped surface (MOTS) with unit normal vector n' and
mean curvature h = V;n':

9+:H_Knn“|—h:0

H_ZH—Knn—hSO

If H= h = 0 then the Penrose inequality follows from the Hamiltonian
constraint (Geroch, ...., Huisken and llmanen).
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The Lichnerowicz equation

Let H=V;K7 = 0 and Sy be a closed surface. Then
g;j=v%g;, Ki=v?Kj, v>0

satisfy the constraint equations if ¢ satisfies the Lichnerowicz equation

N —Fh/;— sz 7.
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The Lichnerowicz equation

Let H=V;K7 = 0 and Sy be a closed surface. Then

g;j=v%g;, Ki=v?Kj, v>0

satisfy the constraint equations if ¢ satisfies the Lichnerowicz equation
A= wa K% T
If, in addition, ¢ satisfies the boundary condition on S
n'dnp + 1h1/; 1k P2 =0
] 2 4 nn -

then Sy becomes MOTS (D. Maxwell, extra conditions required).
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Small perturbations of the Schwarzschild data

As the preliminary data we take
@ the Schwarzschild initial data on t = const

dr?

9= "
r

+ r?(d6? + sin® 0dp?)
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Small perturbations of the Schwarzschild data

As the preliminary data we take
@ the Schwarzschild initial data on t = const

dr?

9= "
r

+ r?(d6? + sin® 0dp?)

@ a nontrivial axially symmetric solution K of the momentum
constraint with H = 0 (Conboye and O’Murchadha)
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Small perturbations of the Schwarzschild data

As the preliminary data we take
@ the Schwarzschild initial data on t = const

dr?

9= "
r

+ r?(d6? + sin® 0dp?)

@ a nontrivial axially symmetric solution K of the momentum
constraint with H = 0 (Conboye and O’Murchadha)

@ the Schwarzschild horizon r = 2M as the surface Sy
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Small perturbations of the Schwarzschild data

As the preliminary data we take
@ the Schwarzschild initial data on t = const

dr?

9= "
r

+ r?(d6? + sin® 0dp?)

@ a nontrivial axially symmetric solution K of the momentum
constraint with H = 0 (Conboye and O’Murchadha)

@ the Schwarzschild horizon r = 2M as the surface Sy

The Penrose inequality, if true, should follow from the Lichnerowicz
equation and the boundary condition.
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Approximation up to K2 : ¢ =1 + 11 + 1z

- |
Ay =0, n'oppy = ZKnn on Sy (1)
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Approximation up to K2 : ¢ =1 + 11 + 1z

Ay =0, n’é),-z/m = %Knn on Sy (1)
P 3
Nipo = —gK,-jK , Noppo = —ZKnn¢1 on Sp (2)
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Approximation up to K2 : o =14+ ¢4 + o

Nipy =0, nopy = %Knn on Sy

1 " ; 3
Aty = _gK,-jK’/ , N'Opby = —ZKnn¢1 on Sp

Total energy (after the conformal transformation):

E=M- l Orpdo
27T Soo
Area of the horizon:
A= [ *do
So
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An integration of the Lichnerowicz equation yields

1 [ 1
E=M+ — K2dV — — ¢ Kun(1 — 34p1)do
167T So 87T SO

and a more subtle integration yields a similar expression for A.
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An integration of the Lichnerowicz equation yields

o 1
E=M+ i K2dV — — ¢ Kun(1 — 34p1)do
167T SO 87T 30

and a more subtle integration yields a similar expression for A.

The Penrose inequality is equivalent to
/ r2(K2)dr + 8M3(Kpn)2 — 12M(2) > 0 (3)
oM

where (...) denotes integral over the unit sphere and ¢y depends on
Knn via the Neumann problem.
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An integration of the Lichnerowicz equation yields

o 1
E=M+ i K2dV — — ¢ Kun(1 — 34p1)do
167T So 87T SO

and a more subtle integration yields a similar expression for A.

The Penrose inequality is equivalent to
/ r2(K2)dr + 8M®3(Kqn)2 — 12M(3)2) > 0 (3)
oM

where (...) denotes integral over the unit sphere and ¢y depends on
Knn via the Neumann problem.

Problem
Given K, > 0 on Sy what is minimal value of the first integral in (3).
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Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q of r and 6.
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Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q of r and 6.
Q' does not appear in K,, and generates terms enlarging K.

J. Tafel (University of Warsaw) The Penrose inequality for an axially perturbec



Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q of r and 6.

Q' does not appear in K,, and generates terms enlarging K.
Dependence on Q

. Q,r K., — Q,G
rsind’ " r3sing

Kre -
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Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q of r and 6.

Q' does not appear in K,, and generates terms enlarging K.
Dependence on Q

. Q,r K., — Q,G
rsind’ " r3sing

Kre -

. . cos 6
(Kyosin?6) g = (rQ,) rsind — 70,9
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Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q of r and 6.

Q' does not appear in K,, and generates terms enlarging K.
Dependence on Q

. Q,r K., — Q,G
rsind’ " r3sing

Kre -

. . cos 6
(Kyosin?6) g = (rQ,) rsind — 70,9

K? =-K| - K.
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Parametrization of axially symmetric solutions Kj

Such solutions of V;K7 = 0 depend on 2 functions Q, Q’ of r and 6

Q' does not appear in K,, and generates terms enlarging K.
Dependence on Q

. Q,r K., — Q,G
rsind’ " r3sing

Kre -

. . cos 6
(Kyosin?6) g = (rQ,) rsind — 70,9

K? =-K| - K.
A convenient form of Q:
Q =sinfqy — acosf, a= const

where q is regular and q , is bounded at occ.
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Expansion into Legendre polynomials P,(z), z = cos 6:

q=Xn=19n(r)Pn .
Kyg creates problems in (K?).
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Expansion into Legendre polynomials P,(z), z = cos 6:
q=2Xn=1qn(r)Pn .
Kyg creates problems in (K?).

Miracle No 1

—
—

an

Koo + —rzKrr = Zn=2((rqn,r),r = Sl 1)7

2 2
where polynomials

are orthogonal.

)'bna
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Expansion into Legendre polynomials P,(z), z = cos 6:

q=Xn=19n(r)Pn .
Kyg creates problems in (K?).

Miracle No 1

—
—

Koo + ErzKrr = Zn=2(("qn,r),r — én(n + 1)%)'7% 5
where polynomials

are orthogonal.

Hence (K?) = ¥Fn(qn) , Fn > 0 and we can look separately for a
minimum of each integral
/ r?Fpdr.
2m
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Variation of integrals leads to fourth order linear ordinary equations for
gn, n > 2 which can be exactly solved (with a help of Mathematica).
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Variation of integrals leads to fourth order linear ordinary equations for
gn, n > 2 which can be exactly solved (with a help of Mathematica).

Solutions read g, = an + % + rnCL where constants are defined by P,
components of K, on the horizon.
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Variation of integrals leads to fourth order linear ordinary equations for
gn, n > 2 which can be exactly solved (with a help of Mathematica).

Solutions read g, = an + % + rnCL where constants are defined by P,
components of K, on the horizon.

Now minimal value of the integrals can be calculated. The Penrose
inequality folows except the case q = (br + £) cos @ (then the 4-th
order approximation in K yields the inequality).
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Variation of integrals leads to fourth order linear ordinary equations for
gn, n > 2 which can be exactly solved (with a help of Mathematica).

Solutions read g, = an + % + rnCL where constants are defined by P,
components of K, on the horizon.

Now minimal value of the integrals can be calculated. The Penrose
inequality folows except the case q = (br + £) cos @ (then the 4-th
order approximation in K yields the inequality).

The Penrose inequality is preserved under a small addition of axially
symmetric exterior curvature to the Schwarzschild data.
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Variation of integrals leads to fourth order linear ordinary equations for
gn, n > 2 which can be exactly solved (with a help of Mathematica).

Solutions read g, = an + % + rnCL where constants are defined by P,
components of K, on the horizon.

Now minimal value of the integrals can be calculated. The Penrose
inequality folows except the case q = (br + £) cos @ (then the 4-th
order approximation in K yields the inequality).

The Penrose inequality is preserved under a small addition of axially
symmetric exterior curvature to the Schwarzschild data.

First (to my knowledge) proof with horizon which is not a minimal
surface.

Generalizations: nonsymmetric K, nonspherical horizons (?)
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