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Non-quantum limit of quantum gravity and Deformed Special Relativity 

✦ We can construct a deformation of the Poincaré algebra, such that the energy scale becomes a 
second relativistic invariant besides the speed of light  

✦ Further motivations:

•Amelino-Camelia, IJMPD 2002, PLB 2001 
•Kowalski-Glikman, IJMPA 2001  
•Magueijo, Smolin, PRL 2002, PRD 2003

•Freidel, Kowalski-Glikman, Smolin, PRD 2004 
•Freidel, Livine PRL 2006 
•Cianfrani, Kowaslki-Glikman, Pranzetti, Rosati, PRD 2016

•Bojowald, Paily, PRD 2013 
•Amelino-Camelia, da SIlva, Ronco, Cesarini, Lecian PRD2017

✦             regime of Quantum Gravity 

   if the limit is taken keeping                  ,  QG effects are governed by an energy scale 
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✦ Because we can define an energy scale but not a length scale, it is natural to look at physics from 
the point of view of momentum space rather than spacetime (focus on relativistic symmetries)

✦ Indications that the effective action of matter coupled to 2+1 quantum gravity describes 
matter fields subject to deformed Poincaré symmetries 
(see talk by G. Rosati later today) 

✦ Indications that the spacetime symmetries emerging in the Minkowski regime of LQG are 
described by a deformed Poincaré group



Poisson-Hopf algebra description of relativistic symmetries 

✦ Hopf algebras provide a consistent mathematical framework to deform special-relativistic 
symmetries and introduce an invariant energy scale

✦ k-Poincaré is the most used Hopf algebra to develop phenomenology associated to deformed 
Poincaré symmetry, in particular focussing on energy-dependent time of travel of relativistic 
particles 

✦ opportunities for phenomenology arise for example in the study of the propagation of very high 
energy particles (photons, neutrinos) from astrophysical sources 
(see talk by G. Amelino-Camelia earlier today)

•Amelino-Camelia, Ellis, Mavromatos, Nanopoulos, Sarkar,  
  Nature 393 (1998)  
•M. Ackermann et al. (Fermi GBM/LAT), Nature 462(2009)  
•Xu, Ma, Astropart.Phys. 82 (2016) 
•Amelino-Camelia, D’Amico, Rosati, Loret, Nat.Astron. 1 (2017) 

•Amelino-Camelia, Kowalski-Glikman, Mandanici, 
Procaccini, Int. J. Mod. Phys. A20 (2005)  

•J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 
1992 
•S. Majid, H. Ruegg, Phys. Lett. B 1994 
•J. Kowalski-Glikman, S. Nowak 2002-2003

✦ in the semiclassical approximation, the symmetries of phase space are described by Poisson 
brackets satisfying the same relations as the commutators of the Hopf algebra 



k-Poincaré Poisson-Hopf algebra

✦ algebra of symmetries in bicrossproduct coordinates (1+1 dimensions)

✦ first Casimir

✦ coproducts and antipodes

•Lukierski, Nowicki, Ruegg, Phys. Lett. B 293 (1992) 
•Lukierski, Ruegg, Nowicki, Tolstoi, Phys. Lett. B 264 (1991) 
•Majid, Ruegg, Phys.Lett. B334 (1994)
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k-Poincaré representation on momentum space

✦ correspondence between structures of the Hopf sub-algebra and of the momentum space:

(�⌦ Id) �� = (Id⌦�) �� (p� q)� k = p� (q � k)

Pµ(p) pµ

�Pµ(p, q) (p� q)µ

S(Pµ)(p) ( p)µ

translations coordinates over manifold

change of basis of the algebra diffeomorphism

coproduct map composition law of momenta

antipode inversion

coassociativity associativity of composition rule

✦ because spacetime translations close a subalgebra, they can be represented as an algebra of 
functions over momentum space •Kowalski-Glikman, Nowak, CQG 2003

•Gubitosi, Mercati, CQG 2013



✦ k-Poincaré momenta live on a (portion of) de Sitter manifold

 change to a basis where the algebra is trivial (coproducts still nontrivial)

these new generators satisfy the relation

•Kowalski-Glikman, Nowak, CQG 2003 
•Kowalski-Glikman PLB 2002 
•Gubitosi, Mercati, CQG 2013 
•Amelino-Camelia, Arzano, Kowalski-Glikman, 
Rosati, Trevisan,   CQG 2012
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Geometric properties of the k-Poincaré momentum space manifold

defining relation of a 1+1 dimensional de Sitter manifold 
embedded in a 2+1 Minkowski manifold 

the energy scale is playing a crucial role in the geometry of 
momentum space, since it defines its radius of curvature



✦ k-Poincaré momenta live on a (portion of) de Sitter manifold

 change to a basis where the algebra is trivial (coproducts still nontrivial)

these new generators satisfy the relation

✦ bicrossproduct coordinates only cover half of the manifold:

•Kowalski-Glikman, Nowak, CQG 2003 
•Kowalski-Glikman PLB 2002 
•Gubitosi, Mercati, CQG 2013 
•Amelino-Camelia, Arzano, Kowalski-Glikman, 
Rosati, Trevisan,   CQG 2012
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✦ the dispersion relation of free particles is invariant under boosts

Curved momentum space and kinematics of free particles
✦ the first Casimir of the algebra gives the mass-shell condition 
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in the massless case :



✦ the dispersion relation of free particles is invariant under boosts

Curved momentum space and kinematics of free particles
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✦ from the point of view of the momentum space:

invariance of the dispersion relation is due to the invariance of the 
line element ds2p = dp20 � e2`p0dp21

the dispersion relation is given by the curves of constant geodesic distance from the 
origin of momentum space
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✦ representation of the algebra of symmetries on phase space

k-Poincaré particle kinematics

•Amelino-Camelia, Barcaroli, Gubitosi, Loret, 
Class.Quant.Grav. 30 (2013) 
•Gubitosi, Barcaroli, PRD 93 (2016) 
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A. Redshift

For dS 1 + 1-dimensional spacetime the metric takes
the form (µ, ⌫ = 0, 1)

ds2 = (dx0)2 � e2Hx0

(dx1)2 (1)

while energy p0 and spatial momentum p1 are conjugate
to the spacetime coordinates:

{x0, x1} = 0, {p0, p1} = 0, {pµ, x⌫} = �⌫µ . (2)

Spatial momentum is a conserved charge, for which we
shall use equivalently the notation p1 and ⇧1. Energy
is not conserved, because of spacetime expansion. Time
translations are deformed by spacetime expansion, and
the associated charge ⇧0 has the properties

{⇧0,⇧1} = H⇧1 , {⇧0, x
1} = �Hx1 , {⇧0, x

0} = 1 . (3)

It is useful to notice that ⇧0 = p0 �Hx1p1. And it shall
be relevant for rendering more vivid our duality to ob-
serve that in dS spacetime (with comoving coordinates)
the worldlines of massless particles crossing the origin of
the observer take the form

x1 =
1� e�Hx0

H
(4)

For a particle on such a worldline one has that energy
and momentum are related through the particle’s time
coordinate:

p1 = �eHx0

p0 (5)

The conceptual content of redshift in dS spacetime is
particularly intuitive when comparing results for energy
measurements by two observers, say Alice and Bob,
whose origins are connected by a worldline of type (4).
Indeed redshift is an e↵ect such that a blue particle
emitted at some source reaches a distant telescope as a
red particle. For easier comparison with the results we
shall later derive for a curved momentum space, we pre-
fer to characterize quantitatively the redshift e↵ect due
to spacetime curvature by comparing its e↵ects on two
di↵erent particles emitted with the same energy (“both
blue”) and from the same source but at di↵erent times.
We therefore consider two particles emitted with the
same energy by emitter Alice (the two worldlines both
cross Alice’s spatial origin) and derive in Sec. IV the
di↵erence in energy of detection of these two particles
at some distant detector Bob (Bob is such that the two
particles both cross Bob’s spatial origin). We find the
following result:
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where p@B
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deed for two particles emitted at Alice with the same
energy (p̃@A
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B. Lateshift

In establishing the duality with the results in the previ-
ous subsection we of course describe the metric of (1+1-
dimensional) dS momentum space as follows:

dk2 = (dp0)
2 � e2`p0(dp1)

2 (7)

And we introduce spacetime coordinates as conjugate to
the momenta:

{x1, x0} = 0, {p1, p0} = 0, {xµ, p⌫} = �µ⌫ , (8)

We shall keep the analogy as close as possible by also
introducing (in analogy with ⇧0,⇧1 of the previous sub-
section) some “relative-locality coordinates” �0,�1 with
�1 ⌘ x1 and �0 ⌘ x0 � `x1p1, so that

{�0,�1} = `�1 , {�0, p1} = �`p1 , {�0, p0} = 1 . (9)

�0 and �1 generate the translational symmetries of the
dS momentum space, but (again in analogy with the dS
spacetime case) �0 does not generate pure p0 shifts.
We shall show that the on-shell condition for massless

particles on the dS momentum-space takes the form

p1 =
1� e�`p0

`
, (10)

which is interestingly dual to the Eq. (4) for the world-
lines of massless particles in dS spacetime, while the dS-
momentum-space picture of worldlines of massless parti-
cles is given by

x1 = �e`p0x0 (11)

which is interestingly dual to the Eq.(5) playing the role
of on-shell relation on the dS-spacetime side.
These Eqs.(7),(8),(9),(10),(11) are exactly dual to the

Eqs.(1),(2),(3),(4),(5) valid on the dS spacetime. This
will prove su�cient for our purposes even though there
is an element of our analysis that is not properly dual:
properties of spacetime translations are responsible for
both redshift and lateshift. An even more precise du-
ality would be found if one studied the implications of
momentum-space curvature for momentum-space trans-
lations, but those are of limited interest in physics.
The duality between redshift and lateshift is nonethe-
less strong enough to allow us to derive in Sec.V a result,
which we propose as main characterization of lateshift,
which is indeed dual to the characterization of redshift
we gave in Eq. (6). This is found by considering again an
emitter Alice and a detector Bob, and takes the shape of
the relationship
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where, consistently with the duality we are exposing, for
this result (12) we consider two particles emitted at the
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V. DE SITTER MOMENTUM SPACE

Our next task is to analyze the dual picture of dS mo-
mentum space. We start by describing the metric on dS
momentum space, with the same structure of the metric
on dS spacetime considered in the preceding section. So
we have, as already noted in (7),

dk2 = (dp0)
2 � e2`p0(dp1)

2 , (55)

and in matrix form

⇣↵� =

✓
1 0
0 �e2`p0

◆
, ⇣↵� =

✓
1 0
0 �e�2`p0

◆
. (56)

For the coordinatization of spacetime in this case al-
lowing for curvature of momentum space we find conve-
nient to start with the possibility of spacetime coordi-
nates �µ which generate translations on dS momentum
space (in analogy with the ⇧µ coordinatization of mo-
mentum space adopted for parts of our analysis of prop-
erties of dS spacetime). For these we have that

{�0,�1} = `�1. (57)

And we shall describe spacetime symmetries of this case
with dS momentum space in terms of charges/generators
of space translation, time translation and boost governed
by the following Poisson brackets3:

{p1, p0} = 0, (58)

{N , p0} = p1, {N , p1} =
1� e�2`p0

2`
� `

2
(p1)

2. (59)

These phase-space Poisson brackets are compatible with
the Jacobi identities upon assuming that the Poisson
brackets involving �µ and pµ satisfy (also see (9))

{p1,�1} = �1 , {p1,�0} = `p1,

{p0,�1} = 0 , {p0,�0} = �1.
(60)

Just like in the dS-spacetime case the possibilities ⇧µ

and pµ for coordintizing momentum space are compa-
rably (though complementarily) convenient, for the dS-
momentum-space case which we are now considering one
can conveniently coordinatize spacetime either with the
coordinates �µ or with the following coordinates xµ:

x1 ⌘ �1 , x0 ⌘ �0 + `�1p1, (61)

{xµ, x⌫} = 0 (62)

{pµ, x⌫} = ��⌫µ (63)

3 Note that rules of action of boosts on momenta of the type here
given in Eq.(59) have been independently of interest in the lit-
erature on the -poincaré Hopf algebra[28, 29], which indeed in
one of the formalisms forwhich a connection with the possibility
of dS momentum space had been made[30, 31].

The convenience of these spacetime coordinates resides
mainly in the fact that translation transformations act
trivially on them, as shown in (63).
Note that all the phase-space relations (57), (58), (60)

and (63) here given for the case of dS momentum space
are dual to the ones, shown in the previous section, that
hold in the dS-spacetime case for conserved charges ⇧↵

and spacetime coordinates x↵: they are obtained one
from the other through the substitutions H $ `, xµ $
pµ and ⇧µ $ �µ.
In comparing results obtained with the two coordina-

tizations of spacetime suitable for theories with dS mo-
mentum space, �µ and xµ, it can be useful to also take
notice of the following two possible representations of our
boost generator:

N = p1�
0 +

✓
1� e�2`p0

2`
+

`

2
p21

◆
�1 (64)

N = p1x
0 +

✓
1� e�2`p0

2`
� `

2
p21

◆
x1. (65)

Once again the duality of these formulae with the rep-
resentations (30) and (31) of the boosts on dS spacetime
is easily seen through the exchange ⇧↵ $ �↵, p� $ x�

and H $ `.
The mass-Casimir invariant of the algebra (59) is

C` =
✓
2

`
sinh

✓
`p0
2

◆◆2

� e`p0p21 . (66)

Therefore for a massless particle on the dS momentum
space one has the on-shell (C` = 0) condition of the form
(10):

p1(p0) =
1� e�`p0

`
(67)

There have been several studies (see, e.g., Refs.[16, 20,
23]) of the implications of momentum-space curvature for
the properties of spacetime worldlines and travel times.
While these previous studies focused on results applica-
ble at leading order in `, drawing from the strength of
the duality here exposed we are now in position to do
an analogous study of the implications of dS momentum
space to all orders in ` (exact).
The dependence of a coordinates �↵ on the worldline

parameter ⌧ can be again found using the condition of
on-shellness(66) as Hamiltonian: d�µ

d⌧ ⌘ �̇µ = {C`,�µ}.
This leads to

�̇0 =
1

`

�
e`p0 � e�`p0

�
+ `p21e

`p0

�̇1 = 2 p1 e
`p0 ,

which evidently implies

�0 (⌧) = �̄0 +

✓
1

`

�
e`p0 � e�`p0

�
+ `p21e

`p0

◆
⌧ ,

�1 (⌧) = �̄1 +
�
2p1e

`p0
�
⌧ ,

P0 = p0

P1 = p1

✦ spacetime is defined via a classical phase-space construction (no quantum effects in the relative 
locality limit) - coordinates are the objects that define a trivial symplectic structure together with 
momenta:

✦ massless coordinate velocity depends on the energy of the particle:
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where �̄µ are the initial conditions.
Specializing to the case of massless particles and elim-

inating the parameter ⌧ we find a wordline of the form
(15):

�1 = �̄1 � (�0 � �̄0) . (68)

which is independent on the particle’s energy and mo-
mentum. Notice however that translations on coordi-
nates act non trivially on both the coordinates �µ and
the momenta, as shown already in (16):

pB0 = Ta B pA0 = pA0 (69)

pB1 = Ta B pA1 = pA1 (70)

�0
B = Ta B �0

A = �0
A � a0 + a1`p1 (71)

�1
B = Ta B �1

A = �1
A � a1 (72)

where again we denote by a0 and a1 the translation pa-
rameters connecting two di↵erent observers. From this
we see that if Alice observes worldlines of the form (68)

�1
A � �̄1

A = �(�0
A � �̄0

A) . (73)

for a particle emitted at a point (�̄0
A = �̄0, �̄1

A = �̄1),
then a distant observer Bob will observe:

�1
B

�
p,�0

�� �̄1
B = �(�0

B � �̄0
B) , (74)

with �̄1
B = �̄1 � a1 and �̄0

B = �̄0 � a0 + a1`p1.
So when using �µ coordinates one has that the form of
the worldline is energy-independent but the translation
transformation is momentum dependent.

It is interesting to compare these findings to the ones
using the coordinatization xµ. The description of the
worldlines in terms of the xµ is found by observing that

ẋ0 = {C`, x0} =
1

`

�
e`p0 � e�`p0

�� `p21e
`p0

ẋ1 = {C`, x1} = 2 p1 e
`p0.

From this, by integrating ẋ1 on the worldline parameter
⌧ , we find

Z ⌧

⌧0

ẋ1d⌧ =

Z x0

x̄0

ẋ1

ẋ0
dx0 = �e`p0(x0 � x̄0) (75)

from which is follows that

x1 � x̄1 = �e`p0(x0 � x̄0), (76)

This shows that with the xµ coordinates the form of the
worldline of a massless particle is momentum dependent,
and confirms Eq.(13), which in the case of a particle
emitted in the observer’s origin, x̄0 = x̄1 = 0, reduces
to Eq.(11). As we already noted in Eq.(14), in the xµ

coordinates translations act trivially:

pB0 = Ta B pA0 = pA0 (77)

pB1 = Ta B pA1 = pA1 (78)

x0
B = Ta B x0

A = x1
A � a1 (79)

x1
B = Ta B x1

A = x0
A � a0 (80)

Then is easy to obtain that if Alice observes a worldline
of the form

x1
A � x̄1

A = �e`p
A
0 (x0

A � x̄0
A), (81)

the translated observer Bob will agree about the wordline
expression in his coordinates,

x1
B � x̄1

B = �e`p
B
0 (x0

B � x̄0
B). (82)

with x̄1
B = x̄1

A � a1 and x̄0
B = x̄0

A � a0.
Summarizing the issue of the choice of spacetime co-

ordinates we have that the form of the worldline of a
massless particle is momentum independent when using
the �µ coordinates whereas it is momentum dependent
when using the xµ coordinates. But this di↵erence is bal-
anced by the other di↵erence: translations transforma-
tions are momentum dependent when using the �µ coor-
dinates whereas they are momentum independent when
using the xµ coordinates.

Following again the logical line of the previous sec-
tion, we also observe that the observers whose origin is
crossed by a given massless particle’s worldline must be
connected (if in relative rest) by a translation with pa-
rameters a1,a0 linked by

a1 = �e`p0a0. (83)

As in the previous section for dS spacetime, also in this
dS-momentum-space case we are interested in compar-
ing observations made by two observers connected by a
translation transformations. While in the dS-spacetime
case it proved useful to consider two particles emitted
at di↵erent times with same energy, we find useful for
the dS-momentum-space case to consider two particles
emitted simultaneously with di↵erent energies.

So let us consider two massless particles emitted with
di↵erent energies p0 and p̃0, in the origin of the observer
Alice:

x1
A = �e`p0x0

A (84)

x1
A = �e`p̃0x0

A (85)

Note that in the dS-momentum-space case the momenta
are conserved along the motion and under invariant un-
der translations, so we omit observer’s indices for them
in this section.
For a translated observer Bob such that the worldline en-
ergy p0 intercepts his origin one has a description of the
worldlines in terms of the following equations:

x1
B = �e`p0x0

B (86)

and

x̃1
B = �e`p̃0 x̃0

B + e`p0a0(1� e`(p̃0�p0)) (87)

where we made use of the relation (83). So the particle
with energy p̃0 arrives at Bob’s spatial origin at time:

x̃0
B (x̃1

B = 0) = �a0(1� e�`(p̃0�p0)) (88)

v ⌘ ẋ

1

ẋ

0
= �e

`p0

11

where �̄µ are the initial conditions.
Specializing to the case of massless particles and elim-

inating the parameter ⌧ we find a wordline of the form
(15):

�1 = �̄1 � (�0 � �̄0) . (68)

which is independent on the particle’s energy and mo-
mentum. Notice however that translations on coordi-
nates act non trivially on both the coordinates �µ and
the momenta, as shown already in (16):

pB0 = Ta B pA0 = pA0 (69)

pB1 = Ta B pA1 = pA1 (70)

�0
B = Ta B �0

A = �0
A � a0 + a1`p1 (71)

�1
B = Ta B �1

A = �1
A � a1 (72)

where again we denote by a0 and a1 the translation pa-
rameters connecting two di↵erent observers. From this
we see that if Alice observes worldlines of the form (68)

�1
A � �̄1

A = �(�0
A � �̄0

A) . (73)

for a particle emitted at a point (�̄0
A = �̄0, �̄1

A = �̄1),
then a distant observer Bob will observe:

�1
B

�
p,�0

�� �̄1
B = �(�0

B � �̄0
B) , (74)

with �̄1
B = �̄1 � a1 and �̄0

B = �̄0 � a0 + a1`p1.
So when using �µ coordinates one has that the form of
the worldline is energy-independent but the translation
transformation is momentum dependent.

It is interesting to compare these findings to the ones
using the coordinatization xµ. The description of the
worldlines in terms of the xµ is found by observing that

ẋ0 = {C`, x0} =
1

`

�
e`p0 � e�`p0

�� `p21e
`p0

ẋ1 = {C`, x1} = 2 p1 e
`p0.

From this, by integrating ẋ1 on the worldline parameter
⌧ , we find

Z ⌧

⌧0

ẋ1d⌧ =

Z x0

x̄0

ẋ1

ẋ0
dx0 = �e`p0(x0 � x̄0) (75)

from which is follows that

x1 � x̄1 = �e`p0(x0 � x̄0), (76)

This shows that with the xµ coordinates the form of the
worldline of a massless particle is momentum dependent,
and confirms Eq.(13), which in the case of a particle
emitted in the observer’s origin, x̄0 = x̄1 = 0, reduces
to Eq.(11). As we already noted in Eq.(14), in the xµ

coordinates translations act trivially:

pB0 = Ta B pA0 = pA0 (77)

pB1 = Ta B pA1 = pA1 (78)

x0
B = Ta B x0

A = x1
A � a1 (79)

x1
B = Ta B x1

A = x0
A � a0 (80)

Then is easy to obtain that if Alice observes a worldline
of the form

x1
A � x̄1

A = �e`p
A
0 (x0

A � x̄0
A), (81)

the translated observer Bob will agree about the wordline
expression in his coordinates,

x1
B � x̄1

B = �e`p
B
0 (x0

B � x̄0
B). (82)

with x̄1
B = x̄1

A � a1 and x̄0
B = x̄0

A � a0.
Summarizing the issue of the choice of spacetime co-

ordinates we have that the form of the worldline of a
massless particle is momentum independent when using
the �µ coordinates whereas it is momentum dependent
when using the xµ coordinates. But this di↵erence is bal-
anced by the other di↵erence: translations transforma-
tions are momentum dependent when using the �µ coor-
dinates whereas they are momentum independent when
using the xµ coordinates.

Following again the logical line of the previous sec-
tion, we also observe that the observers whose origin is
crossed by a given massless particle’s worldline must be
connected (if in relative rest) by a translation with pa-
rameters a1,a0 linked by

a1 = �e`p0a0. (83)

As in the previous section for dS spacetime, also in this
dS-momentum-space case we are interested in compar-
ing observations made by two observers connected by a
translation transformations. While in the dS-spacetime
case it proved useful to consider two particles emitted
at di↵erent times with same energy, we find useful for
the dS-momentum-space case to consider two particles
emitted simultaneously with di↵erent energies.

So let us consider two massless particles emitted with
di↵erent energies p0 and p̃0, in the origin of the observer
Alice:

x1
A = �e`p0x0

A (84)

x1
A = �e`p̃0x0

A (85)

Note that in the dS-momentum-space case the momenta
are conserved along the motion and under invariant un-
der translations, so we omit observer’s indices for them
in this section.
For a translated observer Bob such that the worldline en-
ergy p0 intercepts his origin one has a description of the
worldlines in terms of the following equations:

x1
B = �e`p0x0

B (86)

and

x̃1
B = �e`p̃0 x̃0

B + e`p0a0(1� e`(p̃0�p0)) (87)

where we made use of the relation (83). So the particle
with energy p̃0 arrives at Bob’s spatial origin at time:

x̃0
B (x̃1

B = 0) = �a0(1� e�`(p̃0�p0)) (88)

✦ evolution of phase space coordinates is given by the a Hamiltonian construction

✦ same time delays obtained with ‘k-Minkowski coordinates’ if accounting for the deformed action of 
translations upon them

�

1 = x

1

�

0 = x

0 � `x

1
p1

{�0,�1} = `�1

{�0, p1} = �`p1

{�0, p0} = 0
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Particle trajectories and relativity of locality

worldlines seen by Alice 
(local at emission)

worldlines seen by Bob 
(local at detection)

 worldlines of two massless particles emitted simultaneously with different energies
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where �̄µ are the initial conditions.
Specializing to the case of massless particles and elim-

inating the parameter ⌧ we find a wordline of the form
(15):

�1 = �̄1 � (�0 � �̄0) . (68)

which is independent on the particle’s energy and mo-
mentum. Notice however that translations on coordi-
nates act non trivially on both the coordinates �µ and
the momenta, as shown already in (16):

pB0 = Ta B pA0 = pA0 (69)

pB1 = Ta B pA1 = pA1 (70)

�0
B = Ta B �0

A = �0
A � a0 + a1`p1 (71)

�1
B = Ta B �1

A = �1
A � a1 (72)

where again we denote by a0 and a1 the translation pa-
rameters connecting two di↵erent observers. From this
we see that if Alice observes worldlines of the form (68)

�1
A � �̄1

A = �(�0
A � �̄0

A) . (73)

for a particle emitted at a point (�̄0
A = �̄0, �̄1

A = �̄1),
then a distant observer Bob will observe:

�1
B

�
p,�0

�� �̄1
B = �(�0

B � �̄0
B) , (74)

with �̄1
B = �̄1 � a1 and �̄0

B = �̄0 � a0 + a1`p1.
So when using �µ coordinates one has that the form of
the worldline is energy-independent but the translation
transformation is momentum dependent.

It is interesting to compare these findings to the ones
using the coordinatization xµ. The description of the
worldlines in terms of the xµ is found by observing that

ẋ0 = {C`, x0} =
1

`

�
e`p0 � e�`p0

�� `p21e
`p0

ẋ1 = {C`, x1} = 2 p1 e
`p0.

From this, by integrating ẋ1 on the worldline parameter
⌧ , we find

Z ⌧

⌧0

ẋ1d⌧ =

Z x0

x̄0

ẋ1

ẋ0
dx0 = �e`p0(x0 � x̄0) (75)

from which is follows that

x1 � x̄1 = �e`p0(x0 � x̄0), (76)

This shows that with the xµ coordinates the form of the
worldline of a massless particle is momentum dependent,
and confirms Eq.(13), which in the case of a particle
emitted in the observer’s origin, x̄0 = x̄1 = 0, reduces
to Eq.(11). As we already noted in Eq.(14), in the xµ

coordinates translations act trivially:

pB0 = Ta B pA0 = pA0 (77)

pB1 = Ta B pA1 = pA1 (78)

x0
B = Ta B x0

A = x1
A � a1 (79)

x1
B = Ta B x1

A = x0
A � a0 (80)

Then is easy to obtain that if Alice observes a worldline
of the form

x1
A � x̄1

A = �e`p
A
0 (x0

A � x̄0
A), (81)

the translated observer Bob will agree about the wordline
expression in his coordinates,

x1
B � x̄1

B = �e`p
B
0 (x0

B � x̄0
B). (82)

with x̄1
B = x̄1

A � a1 and x̄0
B = x̄0

A � a0.
Summarizing the issue of the choice of spacetime co-

ordinates we have that the form of the worldline of a
massless particle is momentum independent when using
the �µ coordinates whereas it is momentum dependent
when using the xµ coordinates. But this di↵erence is bal-
anced by the other di↵erence: translations transforma-
tions are momentum dependent when using the �µ coor-
dinates whereas they are momentum independent when
using the xµ coordinates.

Following again the logical line of the previous sec-
tion, we also observe that the observers whose origin is
crossed by a given massless particle’s worldline must be
connected (if in relative rest) by a translation with pa-
rameters a1,a0 linked by

a1 = �e`p0a0. (83)

As in the previous section for dS spacetime, also in this
dS-momentum-space case we are interested in compar-
ing observations made by two observers connected by a
translation transformations. While in the dS-spacetime
case it proved useful to consider two particles emitted
at di↵erent times with same energy, we find useful for
the dS-momentum-space case to consider two particles
emitted simultaneously with di↵erent energies.

So let us consider two massless particles emitted with
di↵erent energies p0 and p̃0, in the origin of the observer
Alice:

x1
A = �e`p0x0

A (84)

x1
A = �e`p̃0x0

A (85)

Note that in the dS-momentum-space case the momenta
are conserved along the motion and under invariant un-
der translations, so we omit observer’s indices for them
in this section.
For a translated observer Bob such that the worldline en-
ergy p0 intercepts his origin one has a description of the
worldlines in terms of the following equations:

x1
B = �e`p0x0

B (86)

and

x̃1
B = �e`p̃0 x̃0

B + e`p0a0(1� e`(p̃0�p0)) (87)

where we made use of the relation (83). So the particle
with energy p̃0 arrives at Bob’s spatial origin at time:

x̃0
B (x̃1

B = 0) = �a0(1� e�`(p̃0�p0)) (88)

x

0
B = Ta . x0

A = x

0
A � a

0

x

1
B = Ta . x1

A = x

1
A � a

1

✦ using coordinates dual to momenta:

�1 � �̄1 = �0 � �̄0
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where �̄µ are the initial conditions.
Specializing to the case of massless particles and elim-

inating the parameter ⌧ we find a wordline of the form
(15):

�1 = �̄1 � (�0 � �̄0) . (68)

which is independent on the particle’s energy and mo-
mentum. Notice however that translations on coordi-
nates act non trivially on both the coordinates �µ and
the momenta, as shown already in (16):

pB0 = Ta B pA0 = pA0 (69)

pB1 = Ta B pA1 = pA1 (70)

�0
B = Ta B �0

A = �0
A � a0 + a1`p1 (71)

�1
B = Ta B �1

A = �1
A � a1 (72)

where again we denote by a0 and a1 the translation pa-
rameters connecting two di↵erent observers. From this
we see that if Alice observes worldlines of the form (68)
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A � �̄1

A = �(�0
A � �̄0

A) . (73)

for a particle emitted at a point (�̄0
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A = �̄1),
then a distant observer Bob will observe:
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with �̄1
B = �̄1 � a1 and �̄0

B = �̄0 � a0 + a1`p1.
So when using �µ coordinates one has that the form of
the worldline is energy-independent but the translation
transformation is momentum dependent.

It is interesting to compare these findings to the ones
using the coordinatization xµ. The description of the
worldlines in terms of the xµ is found by observing that

ẋ0 = {C`, x0} =
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From this, by integrating ẋ1 on the worldline parameter
⌧ , we find
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from which is follows that

x1 � x̄1 = �e`p0(x0 � x̄0), (76)

This shows that with the xµ coordinates the form of the
worldline of a massless particle is momentum dependent,
and confirms Eq.(13), which in the case of a particle
emitted in the observer’s origin, x̄0 = x̄1 = 0, reduces
to Eq.(11). As we already noted in Eq.(14), in the xµ

coordinates translations act trivially:

pB0 = Ta B pA0 = pA0 (77)

pB1 = Ta B pA1 = pA1 (78)
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A � a1 (79)
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Then is easy to obtain that if Alice observes a worldline
of the form

x1
A � x̄1
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A), (81)

the translated observer Bob will agree about the wordline
expression in his coordinates,

x1
B � x̄1

B = �e`p
B
0 (x0

B � x̄0
B). (82)

with x̄1
B = x̄1

A � a1 and x̄0
B = x̄0

A � a0.
Summarizing the issue of the choice of spacetime co-

ordinates we have that the form of the worldline of a
massless particle is momentum independent when using
the �µ coordinates whereas it is momentum dependent
when using the xµ coordinates. But this di↵erence is bal-
anced by the other di↵erence: translations transforma-
tions are momentum dependent when using the �µ coor-
dinates whereas they are momentum independent when
using the xµ coordinates.

Following again the logical line of the previous sec-
tion, we also observe that the observers whose origin is
crossed by a given massless particle’s worldline must be
connected (if in relative rest) by a translation with pa-
rameters a1,a0 linked by

a1 = �e`p0a0. (83)

As in the previous section for dS spacetime, also in this
dS-momentum-space case we are interested in compar-
ing observations made by two observers connected by a
translation transformations. While in the dS-spacetime
case it proved useful to consider two particles emitted
at di↵erent times with same energy, we find useful for
the dS-momentum-space case to consider two particles
emitted simultaneously with di↵erent energies.

So let us consider two massless particles emitted with
di↵erent energies p0 and p̃0, in the origin of the observer
Alice:

x1
A = �e`p0x0

A (84)

x1
A = �e`p̃0x0

A (85)

Note that in the dS-momentum-space case the momenta
are conserved along the motion and under invariant un-
der translations, so we omit observer’s indices for them
in this section.
For a translated observer Bob such that the worldline en-
ergy p0 intercepts his origin one has a description of the
worldlines in terms of the following equations:

x1
B = �e`p0x0

B (86)

and

x̃1
B = �e`p̃0 x̃0

B + e`p0a0(1� e`(p̃0�p0)) (87)

where we made use of the relation (83). So the particle
with energy p̃0 arrives at Bob’s spatial origin at time:

x̃0
B (x̃1

B = 0) = �a0(1� e�`(p̃0�p0)) (88)

✦ using ‘k-Minkowski coordinates’:

✦ measurements done locally (i.e. at spatial 
origin of each observer) do not depend 
on choice of coordinates: Alice emits the 
particles at the same time and Bob 
detects then with a time delay

�x

0 = a

0
�
e

�`�p0 � 1
�



✦ algebra of symmetries (co-algebra sector is trivial) 

✦ mass Casimir

{P0,P1} = H P1

{P0,N} = P1 �H N
{P1,N} = P0

CdS = P2
0 � P2

1 + 2HNP1

ds

2 = (dx0)2 � e

2Hx0

(dx1)2

de Sitter spacetime - symmetries, phase space and particle kinematics
✦ line element in comoving coordinates

✦ representation of symmetry generators:

{xµ
, x

⌫} = 0 ,

{xµ
, p⌫} = ��

µ
⌫ ,

{pµ, p⌫} = 0 .

P0 = p0 �Hx1p1
P1 = p1

N = x1p0 + p1

⇣
1�e�2Hx0

2H � H
2 (x

1)2
⌘

✦ the massless condition                relates energy and spatial momentum, encoding energy redshift
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nate ẋµ is di↵erentiated with respect a worldline a�ne
parameter ⌧ , so that ẋµ ⌘ dxµ/d⌧ . In the following we
will mainly work with their lowered-index version,

p0 = p0, pj = ��ji e
2Hx0

pi , (25)

which satisfy ordinary Poisson algebra with coordinates:

{p0, x0}= 1 , {p0, x1} = 0 , (26)

{p1, x0}= 0 , {p1, x1} = 1 , (27)

We use standard notation for Poisson brackets

{A,B} = !ab
@A

@⇠a
@B

@⇠b
(28)

where ⇠a are the phase space coordinates, and !ab iden-
tifies the phase space symplectic structure.
The conserved charges associated with the translation
and boost transformations we used in section III B have
the following representation on coordinates and mo-
menta:

⇧0 = p0 �Hx1p1 , ⇧1 = p1, (29)

N = x1p0 +
⇣

1�e�2Hx0

2H � H
2 (x

1)2
⌘
p1 . (30)

We can also re-express the boost charge in terms of
translation-transformation charges ⇧↵:

N = x1⇧0 +

 
1� e�2Hx0

2H
+

H

2

�
x1
�2
!
⇧1. (31)

These charges satisfy the algebra

{⇧0,⇧1} = H⇧1 , {N,⇧1} = �⇧0 (32)

{N,⇧0} = �⇧1 +HN , (33)

which in particular admits the following “mass-Casimir”
invariant

C = ⇧2
0 �⇧2

1 + 2HN⇧1 . (34)

The Poisson brackets between conserved translation
charges and coordinates define a symplectic structure

{⇧0, x
0}= 1 , {⇧0, x

1} = �Hx1 , (35)

{⇧1, x
0}= 0 , {⇧1, x

1} = 1 , (36)

which we anticipated in (3).
The Casimir relation (34) for the conserved charges leads
to the dS-spacetime mass-shell condition by substituting
the expression, (29) and (30), of the conserved chargesN ,
⇧↵ in terms of the physical momenta p↵ and coordinates
x� :

(p0)
2 � (p1)

2e�2Hx0

= m2 . (37)

In particular one has p0 = |p1|e�Hx0

for massless parti-
cles.

Note that we restrict our focus on the case of negative
p1 (so that ẋ1/ẋ0 is positive) and therefore take p0 =

�p1e
�Hx0

as we already showed in (5).
The evolution of coordinates xµ along a particle worldline
with parameter ⌧ can be obtained in manifestly covariant
form by using a standard Hamiltonian setup with (37)
playing the role of Hamiltonian:

ẋ1 ={(p0)2 � e�2Hx0

(p1)
2, x1}= �2e�2Hx0

p1

ẋ0 ={(p0)2 � e�2Hx0

(p1)
2, x0}= 2p0= 2|p1|e�Hx0

.
(38)

Then the worldline of a massless particle with initial con-
ditions x1(⌧ = 0) = x̄1 and x0(⌧ = 0) = x̄0 reads:

x1(x0)� x̄1 ⌘
Z x0

x̄0

ẋ1

ẋ0
dx0 =

 
e�Hx̄0 � e�Hx0

H

!
.(39)

In particular for x̄1 = x̄0 = 0 this gives a wordline of the
form already anticipated in Eq.(4) of Subsection II.A.
A convenient way to expose the e↵ects of redshift can

be based on the comparison of measurements of the same
particle made by two di↵erent observers. For this we need
to explicitate the form of finite translation transforma-
tions.
The action of the symmetries generators on the phase

space functions is represented through the ordinary left
action of Lie groups

Gv BA(⇠) =
1X

n=0

1

n!
{v · g, . . . {v · g| {z }

n times

, A(⇠)} . . . }. (40)

being Gv an element of the group identified by the vec-
tor parameter v, and g a set of elements of the algebra
(the generators of the symmetry transformation associ-
ated to the group element Gv). For example a generic
translation Ta, connected to the time and space transla-
tion generators ~t = (t0, t1) by the translation parameters
~a = (a0, a1), acts on a generic phase space function F (⇠)
as

Ta B F (⇠) =
1X

n=0

1

n!
{~a ·~t, . . . {~a ·~t| {z }

n times

, F (⇠)} . . . }. (41)

Then, translation transformations Ta in deSitter space-
time act in the following way on spacetime coordinates
and physical momenta:

pB0 = Ta B pA0 = pA0

pB1 = Ta B pA1 = pA1 e
�a0H

x0
B = Ta B x0

A = x0
A � a0

x1
B = Ta B x1

A = ea
0H

 
x1
A � a1

a0
1� e�a0H

H

!
(42)

where a0 and a1 are, respectively, time and space transla-
tion parameters connecting the two observers. Therefore,
if an observer Alice observes the following worldline of a
photon emitted at her origin (x̄0

A = 0, x̄1
A = 0):

x1
A(x

0) =

 
1� e�Hx0

H

!
, (43)

CdS = 0

✦ particles worldline

ẋ

1 = {CdS , x1} = �2e�2Hx0

p1

ẋ

0 = {CdS , x0} = 2p0
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Duality between de Sitter spacetime and de Sitter momentum space 

spacetime metric momentum space metric

worldline dispersion relation

dispersion relation worldline

generators of translations ‘k-Minkowski coordinates’

3

A. Redshift

For dS 1 + 1-dimensional spacetime the metric takes
the form (µ, ⌫ = 0, 1)

ds2 = (dx0)2 � e2Hx0

(dx1)2 (1)

while energy p0 and spatial momentum p1 are conjugate
to the spacetime coordinates:

{x0, x1} = 0, {p0, p1} = 0, {pµ, x⌫} = �⌫µ . (2)

Spatial momentum is a conserved charge, for which we
shall use equivalently the notation p1 and ⇧1. Energy
is not conserved, because of spacetime expansion. Time
translations are deformed by spacetime expansion, and
the associated charge ⇧0 has the properties

{⇧0,⇧1} = H⇧1 , {⇧0, x
1} = �Hx1 , {⇧0, x

0} = 1 . (3)

It is useful to notice that ⇧0 = p0 �Hx1p1. And it shall
be relevant for rendering more vivid our duality to ob-
serve that in dS spacetime (with comoving coordinates)
the worldlines of massless particles crossing the origin of
the observer take the form

x1 =
1� e�Hx0

H
(4)

For a particle on such a worldline one has that energy
and momentum are related through the particle’s time
coordinate:

p1 = �eHx0

p0 (5)

The conceptual content of redshift in dS spacetime is
particularly intuitive when comparing results for energy
measurements by two observers, say Alice and Bob,
whose origins are connected by a worldline of type (4).
Indeed redshift is an e↵ect such that a blue particle
emitted at some source reaches a distant telescope as a
red particle. For easier comparison with the results we
shall later derive for a curved momentum space, we pre-
fer to characterize quantitatively the redshift e↵ect due
to spacetime curvature by comparing its e↵ects on two
di↵erent particles emitted with the same energy (“both
blue”) and from the same source but at di↵erent times.
We therefore consider two particles emitted with the
same energy by emitter Alice (the two worldlines both
cross Alice’s spatial origin) and derive in Sec. IV the
di↵erence in energy of detection of these two particles
at some distant detector Bob (Bob is such that the two
particles both cross Bob’s spatial origin). We find the
following result:

8
<

:

p̃@A
0 = p@A

0 , x̃0
@A 6= x0

@A

p̃@B
0 = e�H[x̃0

@B�x0
@B ]p@B

0

(6)

where p@B
0 and p̃@B

0 (respectively x0
@B and x̃0

@B) are the
energies (respectively the times) of detection at Bob, in-
deed for two particles emitted at Alice with the same
energy (p̃@A

0 = p@A
0 ) but at di↵erent times (x̃0

@A 6= x0
@A).

B. Lateshift

In establishing the duality with the results in the previ-
ous subsection we of course describe the metric of (1+1-
dimensional) dS momentum space as follows:

dk2 = (dp0)
2 � e2`p0(dp1)

2 (7)

And we introduce spacetime coordinates as conjugate to
the momenta:

{x1, x0} = 0, {p1, p0} = 0, {xµ, p⌫} = �µ⌫ , (8)

We shall keep the analogy as close as possible by also
introducing (in analogy with ⇧0,⇧1 of the previous sub-
section) some “relative-locality coordinates” �0,�1 with
�1 ⌘ x1 and �0 ⌘ x0 � `x1p1, so that

{�0,�1} = `�1 , {�0, p1} = �`p1 , {�0, p0} = 1 . (9)

�0 and �1 generate the translational symmetries of the
dS momentum space, but (again in analogy with the dS
spacetime case) �0 does not generate pure p0 shifts.
We shall show that the on-shell condition for massless

particles on the dS momentum-space takes the form

p1 =
1� e�`p0

`
, (10)

which is interestingly dual to the Eq. (4) for the world-
lines of massless particles in dS spacetime, while the dS-
momentum-space picture of worldlines of massless parti-
cles is given by

x1 = �e`p0x0 (11)

which is interestingly dual to the Eq.(5) playing the role
of on-shell relation on the dS-spacetime side.
These Eqs.(7),(8),(9),(10),(11) are exactly dual to the

Eqs.(1),(2),(3),(4),(5) valid on the dS spacetime. This
will prove su�cient for our purposes even though there
is an element of our analysis that is not properly dual:
properties of spacetime translations are responsible for
both redshift and lateshift. An even more precise du-
ality would be found if one studied the implications of
momentum-space curvature for momentum-space trans-
lations, but those are of limited interest in physics.
The duality between redshift and lateshift is nonethe-
less strong enough to allow us to derive in Sec.V a result,
which we propose as main characterization of lateshift,
which is indeed dual to the characterization of redshift
we gave in Eq. (6). This is found by considering again an
emitter Alice and a detector Bob, and takes the shape of
the relationship

8
<

:

p̃@A
0 6=p@A

0 , x̃0
@A=x0

@A

x̃0
@B � x̃0

@A=e�`[p̃@B
0 �p@B

0 ](x0
@B � x0

@A) ,
(12)

where, consistently with the duality we are exposing, for
this result (12) we consider two particles emitted at the
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introducing (in analogy with ⇧0,⇧1 of the previous sub-
section) some “relative-locality coordinates” �0,�1 with
�1 ⌘ x1 and �0 ⌘ x0 � `x1p1, so that

{�0,�1} = `�1 , {�0, p1} = �`p1 , {�0, p0} = 1 . (9)

�0 and �1 generate the translational symmetries of the
dS momentum space, but (again in analogy with the dS
spacetime case) �0 does not generate pure p0 shifts.
We shall show that the on-shell condition for massless

particles on the dS momentum-space takes the form

p1 =
1� e�`p0

`
, (10)

which is interestingly dual to the Eq. (4) for the world-
lines of massless particles in dS spacetime, while the dS-
momentum-space picture of worldlines of massless parti-
cles is given by

x1 = �e`p0x0 (11)

which is interestingly dual to the Eq.(5) playing the role
of on-shell relation on the dS-spacetime side.
These Eqs.(7),(8),(9),(10),(11) are exactly dual to the

Eqs.(1),(2),(3),(4),(5) valid on the dS spacetime. This
will prove su�cient for our purposes even though there
is an element of our analysis that is not properly dual:
properties of spacetime translations are responsible for
both redshift and lateshift. An even more precise du-
ality would be found if one studied the implications of
momentum-space curvature for momentum-space trans-
lations, but those are of limited interest in physics.
The duality between redshift and lateshift is nonethe-
less strong enough to allow us to derive in Sec.V a result,
which we propose as main characterization of lateshift,
which is indeed dual to the characterization of redshift
we gave in Eq. (6). This is found by considering again an
emitter Alice and a detector Bob, and takes the shape of
the relationship
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this result (12) we consider two particles emitted at the
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✦ related to the fact that in Hopf algebras noncommutativity induces curvature in the dual space, 
and viceversa

•Majid ArXiv: hep-th/0604130



Duality between de Sitter spacetime and de Sitter momentum space 

de Sitter spacetime                           de Sitter momentum space

✦ the duality is even more apparent when looking at the algebra of the full phase space
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the Casimir of the algebra 
determines the worldline  
(and is the Newton-Wigner operator)
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determines the worldline  
(and is the Newton-Wigner operator)
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Putting spacetime and momentum space curvature together

✦ opportunities for phenomenology arise in contexts where spacetime curvature is actually non-
negligible (early universe, propagation of photons from Gamma-ray Bursts etc…)  

 how to implement deformed relativistic transformations over a curved spacetime?

✦ in the context of Hopf algebras, one can study a k-deformation of the de Sitter algebra

✦ extension of results found in kP to curved spacetime is non-trivial - interplay between effects of 
curvature in spacetime and in momentum space 

•Amelino-Camelia, Smolin, Starodubtsev, Class. Quant. Grav. 21(2004)  
•Marciano, Amelino-Camelia, Bruno, Gubitosi, Mandanici, Melchiorri, JCAP 
1006 (2010) 

• Lukierski, Ruegg, Nowicki and Tolstoi, Phys. Lett. B 264 (1991)  
• Ballesteros, Herranz, del Olmo, Santander, J. Phys. A: Math. Gen. 26 (1993) 
• Ballesteros, Herranz, del Olmo, Santander, J. Phys. A: Math. Gen. 27 (1994)

✦ geometrically, in curved ST/flat MS models the MS is the cotangent space of the ST manifold at a 
point; in curved MS/flat ST models ST is the cotangent space of the momentum manifold at a given 
momentum ‘point’ - how does this generalise to cases with curvature on both sides of the phase 
space?



Preliminaries: revisiting the k-Poincaré momentum space construction

✦ algebra in bicrossproduct coordinates (2+1 dimensions)

✦ coproducts

Secondly, the dual δ∗ : g∗ ⊗ g∗ → g∗ of the cocommutator map defines the Lie algebra g∗ of the so-called
dual Poisson-Lie group G∗. In the κ-Poincaré case, if we denote by {X0, X1, X2, X3} the generators in g∗

dual to, respectively, {P0, P1, P2, P3}, their dual Lie brackets are given by:

[

X0, X i
]

= −z X i,
[

X i, Xj
]

= 0, i, j = 1, 2, 3. (7)

Note that when the deformation parameter vanishes, z → 0, then all the coproducts are cocommutative
(∆(X) = X ⊗ 1 + 1⊗X). As a consequence, δ vanishes and the dual Lie algebra (and group) is Abelian. It
is also worth recalling that the dual Lie algebra of the translations sector given by (7) is just the so-called
κ-Minkowski spacetime [34–37].

2.1 Dual Poisson-Lie group and curved momentum space

The dual Poisson–Lie group G∗ can be explicitly constructed starting from the 5-dimensional faithful repre-
sentation ρ of the dual Lie algebra g∗, given by:

ρ(X0) = z

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, ρ(X1) = z

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (8)

ρ(X2) = z

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 −1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, ρ(X3) = z

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 −1 0

⎞

⎟

⎟

⎟

⎟

⎠

. (9)

If {p0, p1, p2, p3} are the local dual group coordinates associated, respectively, to {X0, X1, X2, X3}, then the
dual Lie group element can be constructed through the exponentiation:

G∗(p0, p1, p2, p3) = exp
(

p1ρ(X
1)
)

exp
(

p2ρ(X
2)
)

exp
(

p3ρ(X
3)
)

exp
(

p0ρ(X
0)
)

, (10)

which explicitly reads:

G∗(p) =

⎛

⎜

⎜

⎜

⎜

⎝

cosh(zp0) + 1
2 e

z p0 z2 p̄2 zp1 zp2 zp3 sinh(zp0) + 1
2 e

z p0 z2 p̄2

ez p0 zp1 1 0 0 ez p0 zp1
ez p0 zp2 0 1 0 ez p0 zp2
ez p0 zp3 0 0 1 ez p0 zp3

sinh(zp0) − 1
2 e

z p0 z2 p̄2 −zp1 −zp2 −zp3 cosh(zp0) − 1
2 e

z p0 z2 p̄2

⎞

⎟

⎟

⎟

⎟

⎠

, (11)

where we defined p̄2 = p21 + p22 + p23.

The significance of the dual Poisson–Lie group relies on the fact that the coproduct (2) is just the group
law for G∗ (see [33] for details). In fact, if we multiply two matrices of the type (11) we get another group
element

G∗(p′′) = G∗(p) ·G∗(p′) . (12)

It can be straightforwardly checked that the group law p′′ = f(p, p′) reads:

p′′0 = p0 + p′0, p′′i = pi + e−zp′

0 pi, (13)

which is consistent with (7) in the sense that X0 generates a dilation and the X i generators correspond to
(dual) translations.

Now, by making use of the Poisson version of the quantum duality principle [38–40], the group multipli-
cation law (13) can be immediately rewritten in algebraic terms as a comultiplication map ∆z through the
identification of the two copies of the dual group coordinates as

p ≡ p⊗ 1, p′ ≡ 1⊗ p. (14)

4

✦ Poisson algebra dual to translations

{J, P1} = P2, {J, P2} = �P1, {J, P0} = 0,

{J,K1} = K2, {J,K2} = �K1, {K1,K2} = �J,

{P0, Pa} = 0, {Pa, Pb} = 0, {Ka, P0} = Pa

{Ka, Pb} = �ab

✓
1

2z

�
1� e�2zP0

�
+

z

2
P 2

◆
� zPaPb ,

�z(P0) = P0 ⌦ 1 + 1⌦ P0,
�z(Pa) = Pa ⌦ 1 + e�zP0 ⌦ Pa,
�z(J) = J ⌦ 1 + 1⌦ J,
�z(Ka) = Ka ⌦ 1 + e�zP0 ⌦Ka + z ✏abcPb ⌦ Jc .


z = ` =

1



�

obtained by dualizing the cocommutator map (its form can be read off from the first-order 
deformation of the coproducts of P) and gives the k-Minkowski spacetime algebra
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Preliminaries: revisiting the k-Poincaré momentum space construction

✦ the generic element of the dual Poisson-Lie group is constructed via exponentiation, with    
coordinates on the group

✦ then the group element reads

the coproducts of       can be re-obtained from the group law of G* upon identifying                  
a different choice of ordering of the exponentials would result in a different choice of basis of the 
translation generators

Pµ ⌘ pµPµ

✦ 4d representation of Xµ

⇢(X0) = z

0

BB@

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1

CCA , ⇢(X1) = z

0

BB@

0 1 0 0
1 0 0 1
0 0 0 0
0 �1 0 0

1

CCA , ⇢(X2) = z

0

BB@

0 0 1 0
0 0 0 0
1 0 0 1
0 0 �1 0

1

CCA .

G⇤
(p0, p1, p2) = exp

�
p1⇢(X

1
)

�
exp

�
p2⇢(X

2
)

�
exp

�
p0⇢(X

0
)

�
,

G⇤
(p) =

0

BB@

cosh(zp0) +

1
2 e

z p0 z2 p̄2 zp1 zp2 sinh(zp0) +

1
2 e

z p0 z2 p̄2

ez p0 zp1 1 0 ez p0 zp1
ez p0 zp2 0 1 ez p0 zp2

sinh(zp0) � 1
2 e

z p0 z2 p̄2 �zp1 �zp2 cosh(zp0) � 1
2 e

z p0 z2 p̄2

1

CCA

pµ



Preliminaries: revisiting the k-Poincaré momentum space construction

✦ the k-Poincaré momentum space is generated by the orbits of the dual Poisson-Lie group G* 

acting on the ambient Minkowski space that pass through the point (0,0,0,1):

✦ where we recover the coordinates defined earlier:

such that                                           and 

In this algebraic language, the multiplication law for the group G∗ can be written as a co-product in the
form:

∆z(p0) ≡ p′′0 = p0 ⊗ 1 + 1⊗ p0, ∆z(pi) ≡ p′′i = pi ⊗ 1 + e−zp0 ⊗ pi, i = 1, 2, 3 . (15)

This coproduct is just the one for the translation sector of the κ-Poincaré algebra once the following identi-
fication between the dual group coordinates and the generators of the κ-Poincaré algebra is performed:

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, p3 ≡ P3. (16)

Moreover, the unique Poisson-Lie structure on G∗ that is compatible with the coproduct (15) and has the
undeformed Poincaré Lie algebra as its linearization is given by the κ-Poincaré Poisson brackets for the
translation sector.

Under this approach, the κ-Poincaré momentum space admits a straightforward geometric interpreta-
tion [7]. The entries of the fourth column in G∗ can be rewritten as the following Si functions:

S0 = sinh(zp0) +
1

2
ez p0 z2 p̄2,

S1 = ez p0 z p1,

S2 = ez p0 z p2, (17)

S3 = ez p0 z p3,

S4 = cosh(zp0) −
1

2
ez p0 z2 p̄2 .

Surprisingly enough, these satisfy the defining relation of the (3+1)-dimensional dS space:

−S2
0 + S2

1 + S2
2 + S2

3 + S2
4 = 1. (18)

This means that the κ-Poincarémomentum space parametrized by the ambient coordinates (S0, S1, S2, S3, S4)
can be obtained as the orbit arising from a linear action of the Lie group matrix G∗(p) onto a five-dimensional
ambient Minkowski space and passing through the point (0, 0, 0, 0, 1). Namely:

G∗ · (0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4)
T . (19)
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which means that only half of the (3+1)-dimensional dS space is generated through the action (19). We
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2 e
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S1 = ez p0 z p1,
S2 = ez p0 z p2,
S4 = cosh(zp0) � 1

2 e
z p0 z2 p̄2 .

G⇤ · (0, 0, 0, 1)T = (S0, S1, S2, S4)
T .

�S2
0 + S2

1 + S2
2 + S2

4 = 1

✦ this defines half of a 2+1 dimensional de Sitter manifold

(note the crucial role of the coproducts in the construction)



k-(anti) de Sitter algebra

✦ algebra in 2+1 dimensions (bicrossproduct basis) • Ballesteros, Herranz, del Olmo, Santander, 
J. Phys. A (1994)  

✦ in the k-(anti) de Sitter algebra we see explicitly at work the nontrivial interplay between the 
‘quantum’ deformation parameter z and the cosmological constant    , that is a classical 
deformation parameters (           de Sitter,            anti de Sitter)

⇤
⇤ > 0 ⇤ < 0

The (2+1) κ-dS Poisson-Hopf algebra in the bicrossproduct basis is the Hopf algebra deforma-
tion with parameter z = 1/κ given by [35–37]

{J, P0} = 0, {J, P1} = P2, {J, P2} = −P1,

{J,K1} = K2, {J,K2} = −K1, {K1,K2} = − sin(2z
√
ΛJ)

2z
√
Λ

,

{P0, P1} = −ΛK1, {P0, P2} = −ΛK2, {P1, P2} = Λ sin(2z
√
ΛJ)

2z
√
Λ

,

{K1, P0} = P1, {K2, P0} = P2, (11)

{P2,K1} = z (P1P2 − ΛK1K2) {P1,K2} = z (P1P2 − ΛK1K2) ,

{K1, P1} =
1

2z

(

cos(2z
√
ΛJ)− e−2zP0

)

+
z

2

(

P 2
2 − P 2

1

)

−
zΛ

2

(

K2
2 −K2

1

)

,

{K2, P2} =
1

2z

(

cos(2z
√
ΛJ)− e−2zP0

)

+
z

2

(

P 2
1 − P 2

2

)

−
zΛ

2

(

K2
1 −K2

2

)

,

and with deformed coproduct map

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J) = J ⊗ 1 + 1⊗ J,

∆(P1) = P1 ⊗ cos(z
√
ΛJ) + e−zP0 ⊗ P1 + ΛK2 ⊗

sin(z
√
ΛJ)√

Λ
,

∆(P2) = P2 ⊗ cos(z
√
ΛJ) + e−zP0 ⊗ P2 − ΛK1 ⊗

sin(z
√
ΛJ)√

Λ
, (12)

∆(K1) = K1 ⊗ cos(z
√
ΛJ) + e−zP0 ⊗K1 + P2 ⊗

sin(z
√
ΛJ)√

Λ
,

∆(K2) = K2 ⊗ cos(z
√
ΛJ) + e−zP0 ⊗K2 − P1 ⊗

sin(z
√
ΛJ)√

Λ
,

which explicitly depends on the cosmological constant Λ. The deformed Casimir function for this
Poisson-Hopf algebra reads

Cz =
2

z2

[

cosh(zP0) cos(z
√
ΛJ)− 1

]

−ezP0
(

P
2 − ΛK

2
)

cos(z
√
ΛJ)−2Λ ezP0

sin(z
√
ΛJ)√

Λ
R3, (13)

with R3 = ϵ3bcKbPc. Note that the projection to the κ-dS algebra in (1+1) dimensions is obtained
by setting to zero the generators {P2,K2, J}.

The (2+1) κ-Poincaré Hopf algebra is smoothly recovered in the Λ → 0 limit and in this ‘flat’
case the momentum sector {P0, P1, P2} generates an Abelian Hopf subalgebra with coproducts

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ 1 + e−zP0 ⊗ P1, (14)

∆(P2) = P2 ⊗ 1 + e−zP0 ⊗ P2.

Such a nonlinear superposition law for momenta is the essential footprint of a curved momentum
space, which can be explicitly constructed by following the procedure presented in [9]. Essentially,
the κ-Poincaré momentum space is a three-dimensional manifold generated by the action on a
certain ambient space of the three-dimensional dual Lie group G∗ whose Lie algebra g∗,

[

X0,X1
]

= −z X1,
[

X0,X2
]

= −z X2,
[

X1,X2
]

= 0, (15)

is defined as the dual of the skew-symmetric part of the first order deformation in z of the co-
products (14). The Lie algebra (15) is the so-called (2+1) κ-Minkowski noncommutative space-
time [27,44]. Moreover, when Λ = 0 the deformed Casimir function

Cz =
2

z2
[cosh(zP0)− 1]− ezP0 (P 2

1 + P 2
2 ), (16)
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✦ spacetime translations do not close a sub algebra any more



k-(anti) de Sitter algebra - dual Lie algebra and construction of the momentum space
✦ because in particular the coalgebra sector of translations does not close, the dual Lie algebra 
needs to be constructed with respect to the whole set of k-de Sitter generators

✦ the generic element of the corresponding dual Poisson-Lie group G* is again defined via 
exponentiation

An explicit geometric interpretation of this enlarged momentum space can be obtained along
the same lines of [9] by observing that the entries of the fourth column in G∗

Λ, given by

S0 = sinh(zp0) +
1

2
ez p0 z2(p21 + Λχ2),

S1 = ez p0 z p1,

S2 = ez p0 z
√
Λχ, (26)

S3 = cosh(zp0) −
1

2
ez p0 z2(p21 + Λχ2),

satisfy the defining relation for the (2+1)-dimensional dS space,

− S2
0 + S2

1 + S2
2 + S2

3 = 1. (27)

Moreover, if we consider a linear action of the Lie group G∗
Λ onto a four-dimensional ambient

Minkowski space with coordinates (S0, S1, S2, S3), we have that

G∗
Λ · (0, 0, 0, 1)T = (S0, S1, S2, S3)

T , (28)

which means that the (2+1)-dimensional dS space is generated through G∗
Λ as the orbit that passes

through the point (0, 0, 0, 1) in the ambient space, corresponding to the origin of the (generalized)
momentum space. Note that the orbit passing through the point (0, 0, 0,α), with α ̸= 0, would
satisfy −S2

0 + S2
1 + S2

2 + S2
3 = α2. Moreover, we have that the condition

S0 + S3 = ez p0 > 0, (29)

is automatically obeyed, so that only half of the (2+1)-dimensional dS space is generated as an
orbit of the free action of G∗

Λ, and we will denote this manifold as MdS3
. Finally, when Λ = 0 the

ambient coordinate S2 vanishes, as well as the realization ρ(L) of the dual of the boost generator,
thus recovering the well-known interpretation of the κ-Poincaré momentum space as (half of) a
(1+1)-dimensional dS space, i.e., MdS2

.

3.2 The (2+1) case

The very same procedure described in the previous section can be applied to the construction of
the momentum space associated to the (2+1) κ-dS Poisson-Hopf algebra. The skew symmmetrized
first order in z of the coproduct (12) is given by the cocommutator map

δ(P0) = δ(J) = 0,

δ(P1) = z(P1 ∧ P0 + ΛK2 ∧ J),

δ(P2) = z(P2 ∧ P0 − ΛK1 ∧ J), (30)

δ(K1) = z(K1 ∧ P0 + P2 ∧ J),

δ(K2) = z(K2 ∧ P0 − P1 ∧ J).

Denoting by {X0,X1,X2, L1, L2, R} the generators dual to, respectively, {P0, P1, P2,K1,K2, J},
the Lie brackets defining the Lie algebra g∗ of the dual Poisson-Lie group G∗

Λ are

[X0,X1] = −z X1, [X0,X2] = −z X2, [X1,X2] = 0,

[X0, L1] = −z L1, [X0, L2] = −z L2, [L1, L2] = 0,

[R,X2] = −z L1, [R,L1] = zΛX2, [L1,X2] = 0,

[R,X1] = z L2, [R,L2] = −zΛX1, [L2,X1] = 0,

[R,X0] = 0, [L1,X1] = 0, [L2,X2] = 0.

(31)

8X are dual to translations P, R is dual to the rotation J and L are dual to boosts K

A (faithful) representation ρ of this Lie algebra for Λ ̸= 0 is given by the 6× 6 matrices

ρ(X0) = z

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ρ(X1) = z

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ρ(X2) = z

⎛
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⎜
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If we denote as {p0, p1, p2,χ1,χ2, θ} the local group coordinates which are dual, respectively, to
{X0,X1,X2, L1, L2, R}, then the Lie group element G∗

Λ can be written as

G∗
Λ = exp (θρ(R)) exp

(

p1ρ(X
1)
)

exp
(

p2ρ(X
2)
)

exp
(

χ1ρ(L
1)
)

exp
(

χ2ρ(L
2)
)

exp
(

p0ρ(X
0)
)

, (33)

and its explicit expression can be straightforwardly computed, although we omit it here for the
sake of brevity. By multiplying two of these generic group elements, the group law for G∗

Λ can be
directly derived and written as the following coproduct map for the six dual group coordinates:

∆(p0) = p0 ⊗ 1 + 1⊗ p0, ∆(θ) = θ ⊗ 1 + 1⊗ θ,

∆(p1) = p1 ⊗ cos(z
√
Λ θ) + e−zp0 ⊗ p1 + Λχ2 ⊗

sin(z
√
Λ θ)√

Λ
,

∆(p2) = p2 ⊗ cos(z
√
Λ θ) + e−zp0 ⊗ p2 − Λχ1 ⊗

sin(z
√
Λ θ)√

Λ
, (34)

∆(χ1) = χ1 ⊗ cos(z
√
Λ θ) + e−zp0 ⊗ χ1 + p2 ⊗

sin(z
√
Λ θ)√

Λ
,

∆(χ2) = χ2 ⊗ cos(z
√
Λ θ) + e−zp0 ⊗ χ2 − p1 ⊗

sin(z
√
Λ θ)√

Λ
.

Again, under the identification

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, χ1 ≡ K1, χ2 ≡ K2, θ ≡ J, (35)

this is exactly the coproduct for the κ-dS Poisson-Hopf algebra given in (12), and the unique
Poisson-Lie structure on G∗

Λ that is compatible with (34) and has the undeformed dS Lie algebra
(9) as its linearization is the deformed Poisson algebra given by (11).

In order to provide a geometric interpretation of the six-dimensional generalized momentum
space manifold, we proceed similarly to the (1+1) case and consider the action of G∗

Λ onto an
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however now the local group coordinates include ‘generalized momenta’          , associated to 
boosts and rotations, besides spacetime translations 

as seen before, the coproducts and algebra of the q-de Sitter algebra can be recovered  from the 
group law of G* upon identifying              Pµ ⌘ pµ, �i ⌘ Ki, ✓ = J

•Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017 
•Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018

✓,�i

✦ the orbits of the dual Poisson-Lie group G* acting on the ambient Minkowski space that pass 
through the point (0,0,0,0,0,1) generate the momentum space of k-de Sitter and are given by 

G⇤ · (0, 0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4, S5)
T .



k-de Sitter algebra - properties of the generalised momentum space
✦ the orbits are parameterised by

•Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PLB 2017 
•Ballesteros, Gubitosi, Gutierrez-Sagredo, Herranz, PRD 2018

ambient space. The entries of the sixth column in the matrix realization (33) are

S0 = sinh(zp0) +
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

S1 = ez p0z (cos(z
√
Λ θ) p1 −

√
Λ sin(z

√
Λ θ)χ2),

S2 = ez p0z (cos(z
√
Λ θ) p2 +

√
Λ sin(z

√
Λ θ)χ1),

S3 = ez p0z (− sin(z
√
Λ θ) p2 +

√
Λ cos(z

√
Λ θ)χ1), (36)

S4 = ez p0z (sin(z
√
Λ θ) p1 +

√
Λ cos(z

√
Λ θ)χ2),

S5 = cosh(zp0) −
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

and satisfy the condition
− S2

0 + S2
1 + S2

2 + S2
3 + S2

4 + S2
5 = 1, (37)

which is the defining relation for the (4+1)-dimensional dS space. Therefore, by assuming that the
space of generalized momenta is the group manifold for the dual group G∗

Λ, we can conclude that a
linear action of the Lie group G∗

Λ onto a six-dimensional ambient Minkowski space with coordinates
(S0, S1, S2, S3, S4, S5) allows us to obtain a (4+1) dS space as the orbit that passes through the
point in the ambient space with coordinates (0, 0, 0, 0, 0, 1), which is the origin of the (generalized)
momentum space. Moreover, we have that S0 + S5 = ez p0 > 0, so only half of the dS space is
generated in this way, and we will denote this manifold as MdS5

. Therefore, the (1+1) construction
can be generalized to this (2+1) setting, although some distinctive features of the latter are worth
to be stressed.

Firstly, given that in the (2+1) case one has six symmetry generators, one would naively expect
that the generalized momentum space be a six dimensional manifold, given that in the (1+1) case
the dimensionality of the manifold corresponds to the number of symmetry generators. Instead, we
demonstrated the emergence of a five-dimensional orbit under the action of G∗

Λ. The reason for this
is the completely different role that the dual rotation (R, θ) plays with respect to the dual boosts
(Li,χi), both in the coproduct and in the action (36). In particular, it is immediate to check that the
isotropy subgroup of the point (0, 0, 0, 0, 0, 1) is just the one given by G∗

0 = exp (θρ(R)). Therefore,
the full momentum space for the κ-dS algebra in (2+1) dimensions is the six-dimensional manifold
MdS5

× S1, where the rotation coordinate θ is the one parametrizing S1 while (pi,χi) parametrize
MdS5

.

Secondly, under the identification (35) the deformed Casimir is written as the following function
on the generalized momentum space:

Cz =
2

z2

[

cosh(zp0) cos(z
√
Λθ)− 1

]

−ezp0
(

p21 + p22 − Λ(χ2
1 + χ2

2)
)

cos(z
√
Λθ)−2Λ ezp0

sin(z
√
Λθ)√

Λ
R3,

(38)
which involves all the translation and Lorentz momenta. Nevertheless, if we specialize this function
onto the five-dimensional orbit MdS5

by taking the S1 coordinate θ = 0, we get

Cz =
2

z2
[cosh(zp0)− 1]− ezp0

(

p21 + p22 − Λ(χ2
1 + χ2

2)
)

, (39)

which is an on-shell relation that is just a higher dimensional generalization of the one obtained in
the (1+1) κ-dS case, eq. (25). In this way, the striking equivalence between the role played by the
momenta associated to space translations and boosts is manifestly shown.

Finally, the (2+1) κ-Poincaré construction is again straightforwardly recovered in the limit
Λ → 0, where the action (36) provides S3 = S4 = 0 and the representation (32) is only defined for
{X0,X1,X2}, thus giving rise to (half of) a (2+1) dS space as an orbit under the action of the

10

ambient space. The entries of the sixth column in the matrix realization (33) are

S0 = sinh(zp0) +
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

S1 = ez p0z (cos(z
√
Λ θ) p1 −

√
Λ sin(z

√
Λ θ)χ2),

S2 = ez p0z (cos(z
√
Λ θ) p2 +

√
Λ sin(z

√
Λ θ)χ1),

S3 = ez p0z (− sin(z
√
Λ θ) p2 +

√
Λ cos(z

√
Λ θ)χ1), (36)

S4 = ez p0z (sin(z
√
Λ θ) p1 +

√
Λ cos(z

√
Λ θ)χ2),

S5 = cosh(zp0) −
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

and satisfy the condition
− S2

0 + S2
1 + S2

2 + S2
3 + S2

4 + S2
5 = 1, (37)

which is the defining relation for the (4+1)-dimensional dS space. Therefore, by assuming that the
space of generalized momenta is the group manifold for the dual group G∗

Λ, we can conclude that a
linear action of the Lie group G∗

Λ onto a six-dimensional ambient Minkowski space with coordinates
(S0, S1, S2, S3, S4, S5) allows us to obtain a (4+1) dS space as the orbit that passes through the
point in the ambient space with coordinates (0, 0, 0, 0, 0, 1), which is the origin of the (generalized)
momentum space. Moreover, we have that S0 + S5 = ez p0 > 0, so only half of the dS space is
generated in this way, and we will denote this manifold as MdS5

. Therefore, the (1+1) construction
can be generalized to this (2+1) setting, although some distinctive features of the latter are worth
to be stressed.

Firstly, given that in the (2+1) case one has six symmetry generators, one would naively expect
that the generalized momentum space be a six dimensional manifold, given that in the (1+1) case
the dimensionality of the manifold corresponds to the number of symmetry generators. Instead, we
demonstrated the emergence of a five-dimensional orbit under the action of G∗

Λ. The reason for this
is the completely different role that the dual rotation (R, θ) plays with respect to the dual boosts
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on the generalized momentum space:

Cz =
2

z2

[

cosh(zp0) cos(z
√
Λθ)− 1

]

−ezp0
(

p21 + p22 − Λ(χ2
1 + χ2

2)
)

cos(z
√
Λθ)−2Λ ezp0

sin(z
√
Λθ)√

Λ
R3,

(38)
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, (39)

which is an on-shell relation that is just a higher dimensional generalization of the one obtained in
the (1+1) κ-dS case, eq. (25). In this way, the striking equivalence between the role played by the
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these coordinates satisfy the conditions                                                 and  

this is the embedding of (half of) a 4+1 dimensional de Sitter space into the ambient 5+1 
dimensional Minkowski space,                 

(note symmetric role of spatial momenta and boosts)
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Λ, we can conclude that a
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(S0, S1, S2, S3, S4, S5) allows us to obtain a (4+1) dS space as the orbit that passes through the
point in the ambient space with coordinates (0, 0, 0, 0, 0, 1), which is the origin of the (generalized)
momentum space. Moreover, we have that S0 + S5 = ez p0 > 0, so only half of the dS space is
generated in this way, and we will denote this manifold as MdS5

. Therefore, the (1+1) construction
can be generalized to this (2+1) setting, although some distinctive features of the latter are worth
to be stressed.

Firstly, given that in the (2+1) case one has six symmetry generators, one would naively expect
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which is an on-shell relation that is just a higher dimensional generalization of the one obtained in
the (1+1) κ-dS case, eq. (25). In this way, the striking equivalence between the role played by the
momenta associated to space translations and boosts is manifestly shown.
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As we mentioned, the parameter ω is related to the cosmological constant via ω = −Λ. Therefore, the
one-parametric AdSω algebra reduces to the AdS Lie algebra so(3, 2) when ω > 0, to the dS Lie algebra
so(4, 1) when ω < 0, and to the Poincaré Lie algebra iso(3, 1) when ω = 0.

The algebra (21) has two Casimir invariants. The first one is quadratic and comes from the Killing–Cartan
form:

C = P 2
0 −P

2 + ω
(

J
2 −K

2
)

. (22)

The second one is a fourth-order invariant:

W = W 2
0 −W

2 + ω (J ·K)2 , (23)

where W0 = J · P and Wa = −JaP0 + ϵabcKbPc are the components of the (A)dS analogue of the Pauli–
Lubanski 4-vector. We recall that in the Poincaré case ω = 0 the invariant W 2

0 −W2 provides the square of
the spin/helicity operator, which in the rest frame is proportional to the square of the angular momentum
operator. It is worth emphasising that the presence of a non-vanishing ω implies that the quadratic invariant
(the one linked to dispersion relations) has a new contribution coming from the Lorentz sector of the AdSω
algebra.

By making use of this unified description, the three (3+1) Lorentzian symmetric homogeneous spaces
with constant sectional curvature ω are defined as the coset spaces AdS

3+1
ω ≡ SOω(3, 2)/SO(3, 1), namely:

• When ω > 0 (Λ < 0) we have the AdS spacetime AdS
3+1 ≡ SO(3, 2)/SO(3, 1).

• When ω < 0 (Λ > 0) we have the dS spacetime dS
3+1 ≡ SO(4, 1)/SO(3, 1).

• The Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1) arises when ω = Λ = 0.

Explicit ambient space coordinates for these three maximally symmetric Lorentzian spacetimes can be ob-
tained by making use of a suitable realization of the Lie groups obtained by exponentiation of a faithful
representation of the AdSω Lie algebra (see [42–44] for details in the (2+1)-dimensional case).

In the following Subsections we summarize the main aspects of the κ-deformation of the AdSω Poisson
algebra by making use of this unified description, and then we construct its associated dual Poisson-Lie
group. The construction and analysis of the associated curved momentum spaces are performed separately
for the AdS and dS cases, since their geometric properties turn out to be different.

3.1 The κ-deformation of the (3+1) AdSω algebra

The generalization of the (3+1) Poisson κ-Poincaré algebra to the non-vanishing ω case has been recently
presented explicitly in [41]. In particular, the deformed coproduct for the AdSω algebra reads:

∆z(J3) = J3 ⊗ 1 + 1⊗ J3,

∆z(J1) = J1 ⊗ ez
√
ωJ3 + 1⊗ J1, (24)

∆z(J2) = J2 ⊗ ez
√
ωJ3 + 1⊗ J2,

∆z(P0) = P0 ⊗ 1 + 1⊗ P0,

∆z(P1) = P1 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P1 −

√
ωK2 ⊗ sinh(z

√
ωJ3)

−z
√
ωP3 ⊗ J1 + zωK3 ⊗ J2 + z2ω

(√
ωK1 − P2

)

⊗ J1J2e
−z

√
ωJ3

−
1

2
z2ω

(√
ωK2 + P1

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(P2) = P2 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P2 +

√
ωK1 ⊗ sinh(z

√
ωJ3) (25)

−z
√
ωP3 ⊗ J2 − zωK3 ⊗ J1 − z2ω

(√
ωK2 + P1

)

⊗ J1J2e
−z

√
ωJ3

−
1

2
z2ω

(√
ωK1 − P2

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(P3) = P3 ⊗ 1 + e−zP0 ⊗ P3 + z
(

ωK2 +
√
ωP1

)

⊗ J1e
−z

√
ωJ3

−z
(

ωK1 −
√
ωP2

)

⊗ J2e
−z

√
ωJ3 ,
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corresponding three-dimensional dual group. Summarizing, in (2+1) dimensions the momentum
space for κ-dS is found to be the six-dimensional manifold MdS5

× S1, while its κ-Poincaré limit
was known to be the three-dimensional one MdS3

.

4 Concluding remarks

Deformed special relativity (DSR) theories are characterized by the presence of an energy scale
that plays the role of a second relativistic invariant besides the speed of light. Such an energy scale
allows the geometry of momentum space to be nontrivial, and in fact it is a general feature of DSR
models that the manifold of momenta has nonzero curvature.

In this paper we have shown that the curved momentum space construction can be extended
to cases where also a nonvanishing spacetime cosmological constant is present. We explored in
particular the momentum space of the κ-deformation of the dS algebra, called κ-dS, and we showed
that one can construct a curved generalized-momentum space, that includes not only the momenta
associated to spacetime translations but also the hyperbolic momenta associated to boosts. The
procedure is an adaptation of the one that was successfully used to show that the momentum space
of the κ-Poincaré algebra has the geometry of (half of) a dS manifold and is generated by the orbits
of the dual Poisson-Lie group. The construction here presented can be applied to any other Hopf
algebra deformation of kinematical symmetries with nonvanishing Λ, although the orbit structure
of the momentum space so obtained will indeed depend on the chosen quantum deformation.

The construction in (1+1) dimensions is quite straightforward once one realizes that the boosts
play a very similar role to spatial translations in the structure of the algebra and coalgebra. We
indeed found that the generalized-momentum manifold is a (2+1)-dimensional dS manifold, whose
coordinates are the local group coordinates associated to spacetime translations and boosts.

In (2+1) dimensions matters are complicated by the presence of a rotation generator in the
algebra, that significantly complicates its structure. However the rotation generator has a peculiar
role in the structure of the algebra and coalgebra, while boosts still behave similarly to spatial
translations. We were indeed able to construct the generalized momentum space of the (2+1) κ-dS
algebra whose coordinates are the local group coordinates associated to spacetime translations and
boosts, and we showed that this is half of a (4+1)-dimensional dS manifold, for which the dual
rotation generator generates the isotropy subgroup of the origin.

It is worth mentioning that the formalism here presented, in which Λ is considered as an explicit
‘classical’ deformation parameter (and this fact is connected with the so-called ‘semidualization’
approaches in (2+1) quantum gravity [45, 46]), suggests the possibility of performing the same
construction of the generalized momentum space for the κ-AdS (Anti de Sitter) algebra by taking
Λ < 0. It turns out that one can indeed work out fully the κ-AdS counterpart of the results
described above. The main difference between the κ-dS and κ-AdS cases arises from the dual
group representation (32), which has to be modified in the Λ < 0 case in order to have a real
representation of the corresponding dual Lie group G∗

Λ. The latter can be explicitly constructed
and leads to an action on the point (0, 0, 0, 0, 0, 1) that generates the quadric

− S2
0 + S2

1 + S2
2 − S2

3 − S2
4 + S2

5 = 1, (40)

which is no longer the MdS5
momentum space. Nevertheless, the Λ → 0 limit of this action

annihilates the S3 and S4 coordinates, thus giving rise to the same κ-Poincaré limit as the one
previously obtained from the κ-dS algebra, as it should be.

While the point of this paper was clearly made limiting the analysis to lower-dimensional alge-
bras, the application of the approach here presented to the construction of the momentum space
for the (3+1)-dimensional κ-dS algebra seems to be feasible. In fact, the full κ-dS Poisson Hopf
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✦  Simultaneous presence of curvature in ST and MS intertwines spacetime translations and boosts. Then the 
momentum space is the manifold is generated by the orbits of the dual Lie group of both translations and 
boosts. It is a manifold of ‘generalised momenta’: those associated to translations+ ’hyperbolic momenta’ 
associated to boosts 

✦ In 2+1 dimensions, the resulting manifold is half of a de Sitter space with (4+1) dimensions (#of 
translations+# of boosts). Rotations are the isometry subgroup of the origin of the momentum space.

✦These results can be generalised to q-anti de Sitter algebra, obtaining a manifold defined by the quadratic 
constraint:

✦ One can also look at higher dimension - the main nontrivial additional ingredient are rotations, which 
close a deformed sub algebra with a privileged direction 

still, one can construct the generalised momentum space as half of a 6+1 dimensional de Sitter manifold 
and the rotation sector only has the role of generating the isotropy subgroup of its origin (0,0,0,0,0,0,0,1)



Conclusions and outlook - 2

✦ Understanding the role of rotations allows us to write the Casimir in a simplified form 

which in principle would allow us to study the phenomenology in a similar fashion as the kP case, 
investigating relative locality effects in a curved spacetime. 

✦ This has been done already in the 1+1 case, which however is trivial from the point of view of the 
momentum space (translations and boosts separate). Still, some interesting features already emerged: 

the dispersion relation and worldlines show explicitly the interplay between curvature in ST and MS, 
already at first order in the deformation parameters: 

these features remain in observable properties, such as the time delay in the travel time of photons with 
different energies and the energy redshift of a photon traveling between far away observers:

ambient space. The entries of the sixth column in the matrix realization (33) are

S0 = sinh(zp0) +
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

S1 = ez p0z (cos(z
√
Λ θ) p1 −

√
Λ sin(z

√
Λ θ)χ2),

S2 = ez p0z (cos(z
√
Λ θ) p2 +

√
Λ sin(z

√
Λ θ)χ1),

S3 = ez p0z (− sin(z
√
Λ θ) p2 +

√
Λ cos(z

√
Λ θ)χ1), (36)

S4 = ez p0z (sin(z
√
Λ θ) p1 +

√
Λ cos(z

√
Λ θ)χ2),

S5 = cosh(zp0) −
1

2
ez p0 z2

(

p21 + p22 + Λ
(

χ2
1 + χ2

2

))

,

and satisfy the condition
− S2

0 + S2
1 + S2

2 + S2
3 + S2

4 + S2
5 = 1, (37)

which is the defining relation for the (4+1)-dimensional dS space. Therefore, by assuming that the
space of generalized momenta is the group manifold for the dual group G∗

Λ, we can conclude that a
linear action of the Lie group G∗

Λ onto a six-dimensional ambient Minkowski space with coordinates
(S0, S1, S2, S3, S4, S5) allows us to obtain a (4+1) dS space as the orbit that passes through the
point in the ambient space with coordinates (0, 0, 0, 0, 0, 1), which is the origin of the (generalized)
momentum space. Moreover, we have that S0 + S5 = ez p0 > 0, so only half of the dS space is
generated in this way, and we will denote this manifold as MdS5

. Therefore, the (1+1) construction
can be generalized to this (2+1) setting, although some distinctive features of the latter are worth
to be stressed.

Firstly, given that in the (2+1) case one has six symmetry generators, one would naively expect
that the generalized momentum space be a six dimensional manifold, given that in the (1+1) case
the dimensionality of the manifold corresponds to the number of symmetry generators. Instead, we
demonstrated the emergence of a five-dimensional orbit under the action of G∗

Λ. The reason for this
is the completely different role that the dual rotation (R, θ) plays with respect to the dual boosts
(Li,χi), both in the coproduct and in the action (36). In particular, it is immediate to check that the
isotropy subgroup of the point (0, 0, 0, 0, 0, 1) is just the one given by G∗

0 = exp (θρ(R)). Therefore,
the full momentum space for the κ-dS algebra in (2+1) dimensions is the six-dimensional manifold
MdS5

× S1, where the rotation coordinate θ is the one parametrizing S1 while (pi,χi) parametrize
MdS5

.

Secondly, under the identification (35) the deformed Casimir is written as the following function
on the generalized momentum space:

Cz =
2

z2

[

cosh(zp0) cos(z
√
Λθ)− 1

]

−ezp0
(

p21 + p22 − Λ(χ2
1 + χ2

2)
)

cos(z
√
Λθ)−2Λ ezp0

sin(z
√
Λθ)√

Λ
R3,

(38)
which involves all the translation and Lorentz momenta. Nevertheless, if we specialize this function
onto the five-dimensional orbit MdS5

by taking the S1 coordinate θ = 0, we get

Cz =
2

z2
[cosh(zp0)− 1]− ezp0

(

p21 + p22 − Λ(χ2
1 + χ2

2)
)

, (39)

which is an on-shell relation that is just a higher dimensional generalization of the one obtained in
the (1+1) κ-dS case, eq. (25). In this way, the striking equivalence between the role played by the
momenta associated to space translations and boosts is manifestly shown.

Finally, the (2+1) κ-Poincaré construction is again straightforwardly recovered in the limit
Λ → 0, where the action (36) provides S3 = S4 = 0 and the representation (32) is only defined for
{X0,X1,X2}, thus giving rise to (half of) a (2+1) dS space as an orbit under the action of the
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