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Different classes of Lorentzian type [N] metrics

There are 3 vacuum classes of Lorentzian type [N] metrics

Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)

Robinson - Trautman class (nontwisting, expanding)

Twisting class. The only known explicit solution is Hauser solution1

which is equipped with two symmetries (one Killing vector2, one
homothetic vector3)

1I. Hauser, Type - N gravitational field with twist, Phys. Rev. Lett. 33, 1112
(1974)

2Ka is a Killing vector if ∇(aKb) = 0.
3Ka is a homothetic vector if ∇(aKb) = χ0gab.
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Type [N] in Lorentzian geometry

Penrose theorem says:

CABCD = m(AnBrCsD), CȦḂĊḊ = m(ȦnḂrĊsḊ)

where mA, nA, rA and sA are undotted Penrose spinors, mȦ, nȦ, rȦ
and sȦ are dotted Penrose spinors.

Type [N] is characterized by the condition

CABCD = mAmBmCmD

In Lorentzian geometry: mȦ = mA, so

CȦḂĊḊ = mȦmḂmĊmḊ = CABCD
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The first necessary condition for the existence of the
Lorentzian slices

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the ”mixed” types, like [N]⊗ [D].

The first necessary condition for existing of the Lorentzian slices

If a complex space admits real Lorentzian slice then SD and ASD parts of
the Weyl spinor are of the same Petrov-Penrose typea.

aK. Rózga, Real slices of complex space-time in general relativity, Rep. Math.
Phys. 11, 197 (1977)

Complex counterpart of the Lorentzian type [N] is the type [N]⊗ [N].
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Congruence of the SD null strings

Let D be a 2-dimensional SD distribution: D = {mAaḂ ,mAbḂ},
aȦb

Ȧ 6= 0. It is integrable in the Frobenius sense, if

mAmB∇AṀmB = 0. (1)

Equations (1) are called SD null string equations.

Integral manifolds of the distribution D are 2-dimensional, holomorphic,
totally null and geodesic surfaces, called null strings. Their family
constitutes the congruence of the SD null strings.
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Congruence of the SD null strings

SD null string equations can be rewritten in the form

mB∇AṀmB = mAMṀ .

Spinor field MṀ is called expansion of the congruence.

MṀ = 0 – nonexpanding congruence

MṀ 6= 0 – expanding congruence

Nonexpanding congruence = distribution D is parallely propagated:

∇VX ∈ D for any vector field V and any vector field X ∈ D

Spaces which admit nonexpanding congruence of SD null strings are
called Walker spaces.
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The second necessary condition for the existence of the
Lorentzian slices

The second necessary condition for existing of the Lorentzian slices

If a complex space equipped with the congruences of SD and ASD null
strings admits real Lorentzian slice then both congruences are expanding
or both are nonexpanding.

The first criterion of the classification: properties of the congruences of
the null strings:

[N]e ⊗ [N]e

[N]n ⊗ [N]n

[N]n ⊗ [N]e (this type does not admit Lorentzian slices)
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Intersection of SD and ASD congruences of the null strings

Intersection of these congruences constitutes the congruence of the
complex, null geodesics. It is given by the vector field Ka ∼ mAmḂ .
Define complex expansion θ and complex twist % by the formulas

θ :=
1

2
∇aKa ∼ mAM

A +mȦM
Ȧ

%2 :=
1

2
∇[aKb]∇aKb ∼ mAM

A −mȦM
Ȧ

The second criterion of the classification: properties of the intersections
of the congruences of SD and ASD null strings:

[++]: θ 6= 0, % 6= 0

[+−]: θ 6= 0, % = 0

[−+]: θ = 0, % 6= 0 (this case cannot appear in Einstein spaces)

[−−]: θ = 0, % = 0
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Type [N]⊗ [N] spaces
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Hyperheavenly spaces - definition

Definition

Hyperheavenly space (HH-space) is a 4-dimensional complex analytic
differential manifold equipped with a holomorphic metric ds2 which
satisfies the vacuum Einstein equations and such that the self-dual part
of the Weyl tensor is algebraically degenerate.
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Hyperheavenly spaces - the metric

The metric of the Einstein type [N]⊗ [any] spaces can be brought to the
form8

ds2 = 2φ−2
{

(dηdw − dφdt)− φWηη dt
2

+(2Wη − 2φWηφ) dwdt+ (2Wφ − φWφφ) dw2
}

where (φ, η, w, t) are local coordinates called Plebański - Robinson -
Finley coordinates, function W = W (φ, η, w, t) is the key function, which
satisfies the hyperheavenly equation

φWηηWφφ − φWηφWηφ + 2WηWηφ − 2WφWηη + (Wwη −Wtφ) = φγ

γ = γ(w, t) is an arbitrary function such that γt 6= 0.

8J.F. Plebański, I. Robinson, Left - degenerate vacuum metrics, Phys. Rev. Lett.
37, 493 (1976)
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Type {[N]n ⊗ [N]n, [−−]}
Type {[N]e ⊗ [N]e, [−−]}
Type {[N]e ⊗ [N]e, [+−]}
Type {[N]e ⊗ [N]e, [++]}

Type {[N]n ⊗ [N]n, [−−]}

The metric reads

ds2 = 2(dζdζ̃ − dvdu+ (f(u, ζ) + f̃(u, ζ̃))du2) (2)

where f = f(u, ζ) and f̃(u, ζ̃) are arbitrary holomorphic functions such

that fζζ 6= 0, f̃ζ̃ζ̃ 6= 0. The metric admits null Killing vector K =
∂

∂v
.

(u, v, ζ, ζ̃) – real, the metric (2) has neutral signature

(u, v) – real, (ζ, ζ̃ = ζ̄) – complex with f̃ = f̄ , the metric (2) has
Lorentzian signature and it is pp-wave metric
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Type {[N]e ⊗ [N]e, [−−]}
The metric reads

ds2 = 2φ−2

{
1

τ
(dηdw − dφdt)− 2φ2dt2 +

(
2η2 − (gx + ft)

φ

2τ

)
dw2

}
where

g = g(x,w), gxxx 6= 0, x := t−
1

2τφ
, f = f(w, t), fttt 6= 0

There exist complex transformation of the variables which brings the metric to the
form

ds2 = 2dζdζ̃ − 2du

(
dv −

2v

ζ + ζ̃
d(ζ + ζ̃)

)
(3)

+2

(
v2

(ζ + ζ̃)2
− (ζ + ζ̃)(H(u, ζ) + H̃(u, ζ̃))

)
du2

(u, v, ζ, ζ̃) – real, the metric (3) has neutral signature

(u, v) – real, (ζ, ζ̃ = ζ̄) – complex with H̃ = H̄, the metric (3) has Lorentzian
signature and it belongs to the Kundt class
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Type {[N]e ⊗ [N]e, [++]}

Type {[N]e ⊗ [N]e, [−−]}

Similarity between pp-wave metric and Kundt class

Both spaces are equipped with nontwisting and nonexpanding
congruence of null geodesics

Differences between pp-wave metric and Kundt class

Pp-waves are equipped with null Killing vector, while Kundt class
does not admit such symmetry

Complex pp-waves are equipped with congruences of SD and ASD
the null strings, both nonexpanding: {[N]n ⊗ [N]n, [−−]} while
complex Kundt class is equipped with congruences of SD and ASD
the null strings, both expanding: {[N]e ⊗ [N]e, [−−]}
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ds2 = 2φ−2

{
1

τ
e−2τfdwdx−

1

τ
dφdt− φ(ft + gx)dt2 + 2e−2τfg dwdt

}
(4)

where g = g(x, t) such that gxxx 6= 0 and f = f(w, t) such that (τf2
w + fww)t 6= 0.

There exist complex transformation of the variables which brings the metric (4) to the
form

ds2 = −2drdu+ 2r ∂u ln(HH̃) du2 +
2r2

H2H̃2
dζdζ̃, H = H(u, ζ), H̃ = H̃(u, ζ̃) (5)

(u, v, ζ, ζ̃) – real, the metric (5) has neutral signature

(u, v) – real, (ζ, ζ̃ = ζ̄) – complex with H̃ = H̄, the metric (5) has Lorentzian
signature and it belongs to the Robinson - Trautman class9

9H. Stephani at al., ”Exact Solutions...”, Theorem 28.1 specialized for m = 0 and
∆ lnP = 0, ∆ := P 2∂ζ∂ζ̄ .
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+2Fη dwdt+ 2(η2 +m)dw2}

where F = F (η, w, t) and m = m(w, t) satisfy the following equation

2(η2 +m)Fηη − 4ηFη −
1

τ
Fηw +

1

τ
mt = 0, Fηηηη 6= 0, mt 6= 0

General solution is not know.
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The metric (6) can be brought to the form

ds2 = −2drdu−
(
r ∂u ln(KP−2) + ε

)
du2 +

2r2

P 2

K

ε
dζdζ̃ (7)

where ε = ±1, functions P = P (u, ζ, ζ̃) and K = K(u, ζ) satisfy the equation

2P 2(lnP )
ζζ̃

= K (8)

(u, v, ζ, ζ̃) – real, the metric (7) has neutral signature

(u, v) – real, (ζ, ζ̃ = ζ̄) – complex, the metric (7) has Lorentzian signature and it
belongs to the Robinson - Trautman class10

Moreover, Lorentzian slice implies:

Function K becomes the function of only one variable u and admissible gauge
freedom allows to bring it to the constant value, K = ε = ±1

Equation (8) reduces to the equation 2P 2(lnP )ζζ̄ = ±1

10H. Stephani at al., ”Exact Solutions...”, Theorem 28.1 specialized for m = 0 and
∆ lnP = ±1, ∆ := P 2∂ζ∂ζ̄ .
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Type {[N]e ⊗ [N]e, [+−]}
Type {[N]e ⊗ [N]e, [++]}

Type {[N]e ⊗ [N]e, [++]}

Type {[N]e ⊗ [N]e, [++]} without any symmetries:

The hyperheavenly equation splits into the overdetermined system of
three equations for two functions of three variables

Type {[N]e ⊗ [N]e, [++]} with one symmetry:

A little simpler system but still overdetermined

Type {[N]e ⊗ [N]e, [++]} with two symmetries:

Killing vector K1 = ∂w

Homothetic vector K2 = w∂w + t∂t + (1− 2χ0)(φ∂φ + η∂η)

The system can be reduced to the single ODE of the fifth order
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In local coordinates (v, φ, w, t) the metric can be brought to the form

ds2 =
2

φ2

{
1

τ

(
t1−2χ0 − φ

dh

dv

)
dvdw −

1

τ
h dφdw −

1

τ
dφdt

−
(
φt−1

(
dT

dv
−

1− 2χ0

2τ

)
− φ2t2χ0−2

(
h
d2T

dv2
−
d2Z

dv2

))
dt2

+2

(
t−2χ0T − φht−1

(
dT

dv
−

1− 2χ0

2τ

)
+

1

2
φ2t2χ0−2

(
h2 d

2T

dv2
−
dP

dv

))
dwdt

+

(
2t−2χ0Z + φt−1

(
P − 2h

dZ

dv

)
+ φ2t2χ0−2h

(
h
d2Z

dv2
−
dP

dv

))
dw2

}
where P = P (v), Z = Z(v), T = T (v) and

h :=
Z′′′

T ′′′
≡

P ′′

Z′′′
, ′ := ∂v , T

′′′ 6= 0, h 6= const

Adam Chudecki*, Maciej Przanowski** Complex and real type [N] ⊗ [N] spaces



Introduction
Types [N] in complex and Lorentzian geometries

Types [N] ⊗ [N] with Lorentzian slices
Types [N] ⊗ [N] without Lorentzian slices

Concluding Remarks

Type {[N]n ⊗ [N]n, [−−]}
Type {[N]e ⊗ [N]e, [−−]}
Type {[N]e ⊗ [N]e, [+−]}
Type {[N]e ⊗ [N]e, [++]}

Type {[N]e ⊗ [N]e, [++]}, two symmetries

Where

Z(v) :=
1

Q′
, T (v) :=

1

2τ

Q

Q′

P (v) := τQχ0−1Q′−
1
2

∫
Q−χ0Q′

3
2

(γ0
τ2
− 2Q′−2{Q, v}

)
dv

where Q = Q(v) and

{Q, v} :=
Q′′′

Q′
− 3

2

Q′′2

Q′2

is the Schwarzian derivative of the function Q
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{Q, v}

)′
− 1

2∆
[QQ′−2Q′′ + 2(χ0 − 2)]

[
T ′′′

∆

(
2Q′−2{Q, v} − γ0

τ2

)
+
Z ′′′2

T ′′′

]
= 0

where

Z ′′′ = −Q′(Q′−2{Q, v})′

T ′′′ = − 1

2τ

Q′

Q

(
Q2

Q′2
{Q, v}

)′
∆ = − 1

2τ2
Q2

Q′2
{Q, v}+

(χ0 − 2)(χ0 − 1)

τ2
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Type {[N]e ⊗ [N]e, [−−]}
Type {[N]e ⊗ [N]e, [+−]}
Type {[N]e ⊗ [N]e, [++]}

Type {[N]e ⊗ [N]e, [++]}, two symmetries

Disadvantages of our approach:

No new solutions have been found so far (most promising case is
χ0 = 2)

Hauser solution has not been reconstructed so far

No transformation which reduce the order of the final differential
equation has been found so far
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Advantages of our approach

Final equation is ODE and it can be written in the form

Q′′′′′ = G(Q,Q′, Q′′, Q′′′, Q′′′′)

with G being the rational function. It always has a solution for
arbitrary initial values. It works in complex case, real Lorentzian case
and real neutral case.

We formulated the theorem which is complex counterpart of the
theorem formulated by W.D. Halford (1979) and C.D. Collinson
(1969, 1980)

Theorem

For any vacuum HH-spaces of the type [N]⊗ [II,D,III,N] with twisting
congruence of null geodesics arising as intersection of SD null strings
with ASD null strings there exist at most two homothetic Killing vectors.
They must be noncommuting.
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Type {[N]e ⊗ [N]n, [−−]}
Type {[N]e ⊗ [N]n, [++]}

Type {[N]e ⊗ [N]n, [−−]}

In neutral signature spaces:

{[N]e ⊗ [N]e, [−−]} −→ {[N]e ⊗ [N]n, [−−]} −→ {[N]n ⊗ [N]n, [−−]}

In this case the metric can be brought to the form

ds2 = 2φ−2
{
τ−1(dηdw − dφdt)− 2B0φ

2dwdt (9)

+ (2g − φgφ − fφ+ 2B0ηφ)dw2
}

where

f = f(w, t), ftt 6= 0, g = g(φ,w), gφφφ 6= 0, B0 = {1, 0}

If B0 = 0 then the metric (9) admits null Killing vector K = ∂η.
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Type {[N]e ⊗ [N]n, [−−]}
Type {[N]e ⊗ [N]n, [++]}

Type {[N]e ⊗ [N]n, [++]}

No symmetries.

The metric reads

ds2 = 2φ−2
{
τ−1(dηdw − dφdt)− φ2Txx dt2

+(2φηTxx − 2φ2Tx) dwdt

+(2φηTx − η2Txx − τ−1Cφ) dw2
}

where x := η/φ, C = C(w, t) is an arbitrary function such that Ctt 6= 0,
function T = T (x,w, t) satisfies the equation

C Txx + Txw − 3Tt + xTxt = 0
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Type {[N]e ⊗ [N]n, [−−]}
Type {[N]e ⊗ [N]n, [++]}

Type {[N]e ⊗ [N]n, [++]}, one symmetry

One symmetry: K1 = ∂w − 2χ0 (φ∂φ + η∂η)

The metric reads

ds2 = 2φ−2
{
τ−1(dηdw − dφdt)− φ2e2χ0wHxx dt

2

+2e2χ0wφ2(xHxx −Hx) dwdt

+(2B0η − τ−1Cφ− e2χ0wηφ(xHxx − 2Hx)) dw2
}

where x := η/φ, C = C(t) is an arbitrary function such that Ctt 6= 0,
function H = H(x, t) satisfies the equation

(−2τB0x+ C)Hxx + (2τB0 + 2χ0)Hx + xHxt − 3Ht = 0
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Two symmetries: K1 = ∂w, K2 = w∂w + t∂t + (1− 2χ0)(φ∂φ + η∂η)
The metric reads11

ds2 = 2φ−2

{
τ−1(dηdw − dφdt)− φ

(
Ω0t
−1 − φt2(χ0−1) dU

dh

)
dt2[

2φ2t2(χ0−1)

(
h
dU

dh
− U

)
− 2Ω0φht

−1

]
dwdt[

φ2t2(χ0−1)h

(
h
dU

dh
− 2U

)
+R0φt

−1

]
dw2

}
where η = −hφ, Ω0 and R0 6= 0 are constants and function U = U(h) satisfies the
following equation

(Ω0h
2 +R0)

d2U

dh2
− 2

χ0 − 1

τ
h
dU

dh
− 2

(
Ω0 −

2(χ0 − 1)

τ

)
U = 0

for χ0 = 1 this equation has the form very similar to the equation describing Hauser
solution.

11A.C., M. Przanowski, On twisting type [N]⊗ [N] Ricci flat complex spacetimes
with two homothetic symmetries, Journal of Mathematical Physics 59, 042504 (2018)
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Concluding Remarks

Complex twisting class with one symmetry and without any
symmetries: can it be reduced to the single equation?

Some tricks used in analysis of the complex types [N]⊗ [N] spaces
have been successfully used to find first explicit example of
para-Hermite space of the type {[D]ee ⊗ [N]n, [++,++]}.
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