

(3D-GR simulation in Kuroda, Kotake et al. in prep)

Menu:

1st. General Introduction

Why multi-messengers (inc. GW)?
Basics of GW Physics and Detection
First detection of GW150914

2nd. Core-collapse supernova theory:

how to solve "<u>numerically</u>"
the space-time evolution of dying stars

3rd. GW signatures from core-collapse supernovae: what we can learn from future GW observation ?

Bottom-line : Story about ?

"Core-Collapse Supernova (CCSN)" is explosion of massive stars (> ~9 M_{sun})

✓ Origin of explosion asymmetry
 ✓ Origin of heavy elements
 ✓ Origin of explosion energy (~ 10⁵¹ erg = 1 Bethe)

Bottom-line : Story about ?

"Core-Collapse Supernova (CCSN)" is <u>explosion</u> of massive stars (> ~9 M_{sun})

Origin of heavy elements

🗸 Origin of explosion energy (~ 10⁵¹ erg = 1 Bethe)

Not clear... over 50 years ! (lecture by Foglizzo)

Why "Multi-Messenger" observations ?

DeLanev et al. (2010)

 Conventionally, "Astronomy" means electromagnetic-wave (EM) observation.

Gravitational wave (GW) homework from ...?

Einstein's theory of General relativity (1915)

GWs : a ripple of space-time propagate at the speed of light

First announcement by LIGO (Laser Interferometer Gravitational Wave Observatory)

Once is a chance, twice is a coincidence, thrice is a pattern !

GWs from merging BHs (**GW150914**) !!!

Credit: LIGO

Gravitational wave (GW) ?

Einstein's theory of General relativity (1915)

688

GWs : a ripple of space-time propagate at the speed of light

✓ How to generate GW Electromagn

charge

Dynamical motion of electric-magnetic (EM) fiel

\Rightarrow Electro-magnetic wa

Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. Einstein.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die $g_{\mu\nu}$ in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_4 = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter "erster Näherung" ist dabei verstanden, daß die durch die Gleichung

$$\gamma_{\mu\nu} = -\delta_{\mu\nu} + \gamma_{\mu\nu} \tag{1}$$

Basics of Gravitational-wave (GW) emission (1/3)

Naive analogy with Electromagnetics: Quiz1: "leading term of EM emission" ?!

Ans: Electric dipole radiation !

$$L_{\rm dipole} = \frac{2}{3} \frac{d^2}{dt^2} d^2$$

Quiz 2: Dipole radiation from moving "<u>uncharged</u>" particles ?!

Matter dipole moment $\frac{d}{dt}d = \sum_{\text{particles } i} m_i \frac{d}{dt} \boldsymbol{x}_i = P_i$ $d = \sum m_i x_i$ particles i $L_{\text{dipole}} = 0$ (because $\frac{d}{dt}P_i = 0$) Next-order emission in EM; Magnetic dipole radiation from electric current. Matter-current dipole moment: magnetic dipole moment $oldsymbol{\mu} = \sum x_i imes m_i oldsymbol{v}_i$ $\mathbf{m} = \int \mathcal{M} d^3 x = \frac{1}{2c} \int (\mathbf{x} \times \mathbf{J}) d^3 x$ particles i $\frac{d^2\mu}{dt^2} = 0 \text{ (ang. momentum conservation)} \Rightarrow \text{ No dipole emissions from matter motions}$

 $\Rightarrow \frac{d^2}{dt^2}$ (Quadrupole (>) matter moments) leads to Gravitational-wave (GW emission) !

Basics of Gravitational-wave (GW) emission (2/3)

(e.g., "Gravitation", Misner, Thorne, Wheeler, 1973)

Standard Quadrupole formula (SQF)

Russell A Hulse

Joseph H. Taylor Jr

Short History: 1st generations of Laser-interferometers

- ✓ Start Observation ~ 1999 (TAMA of NAOJ)
- ✓ 6 interferometers by 4 projects -> International Newtorks
- ✓ Observational range (binary NS, lecture by Bauswein)-> ~20 Mpc:Event rate ~0.01/yr

✓ 2nd generations of Laser-interferometers

✓ International network of LIGO-Virgo (LVC) is working.
 -> First joint GW detection of BH-BH merger (Abbott et al. (2017), PRL)
 ✓ Obs. Range > 200 Mpc -> Event rate ~ 10/ yr !

KAGRA THE KAGRA PROJECT

- About 300 collaborators
- Over 30 Japanese institutes, over 40 international institutes

KAGRA = Kamioka Gravitational Wave Detector

✓ GW amplitudes by an order-of-magnitude estimation

 GMv^2

|h|

 $G \sim 6 \times 10^{-8}$ cgs. c $\sim 3 \times 10^{10}$ cm/s Mass(M) : 600000 ton Length : 300 m Frequency: 2/s Observer distance(r): ? m

Koji Murofushi, Medalist Hammer thrower-

Quiz: How much is your "h"? Can we observe the GWs??

"*h*" is a strain. $\Delta L = h \times L$

 GMv^2

rc

 $\dot{h} \approx$

Can we observe the GW emission from the rotating building ?

Can we observe the GW emission from the rotating building ?

- ➤ Size of nuclei (5 fm) / distance between Fukuoka and Kyoto (600 km)
- Size of atom (0.1 nm) / distance from Earth and Sun (1.5 hundred million km)
- \sim Can measure the change of the galaxy (0.1 million light year) with accuracy of 1 m !

More mass ! More velocity ! : Astrophysical GW sources

More mass ! More velocity ! : Astrophysical GW sources

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (1/4)?

(1). Positions of the two stars (NSs)

$$x_{1} = \frac{m_{2}}{m_{1} + m_{2}} a \cos(\omega t), \qquad y_{1} = \frac{m_{2}}{m_{1} + m_{2}} a \sin(\omega t),$$
$$x_{2} = -\frac{m_{1}}{m_{1} + m_{2}} a \cos(\omega t), \qquad y_{2} = -\frac{m_{1}}{m_{1} + m_{2}} a \sin(\omega t)$$

(here we used the relations, $m_1 r_1 = m_2 r_2$, $a = r_1 + r_2$, $\Rightarrow r_1 = \frac{m_2}{m_1 + m_2} a$, $r_2 = \frac{m_1}{m_1 + m_2} a$) (2). Kepler's (third) law: $F = \frac{Gm_1m_2}{a^2} = \frac{m_1v_1^2}{r_1^2} = \frac{m_2v_2^2}{r_2^2}$, $v_1 = r_1\omega$, $v_2 = r_2\omega \Rightarrow$ $G(m_1 + m_2) = \omega^2 a^3$

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?

(3). Quadrupole moments

$$I_{xx} = m_1 x_1^2 + m_2 x_2^2 = \frac{m_1 m_2}{m_1 + m_2} a^2 \cos^2(\omega t) = \frac{m_1 m_2}{2(m_1 + m_2)} a^2 [1 + \cos(2\omega t)],$$

$$I_{yy} = m_1 y_1^2 + m_2 y_2^2 = \frac{m_1 m_2}{m_1 + m_2} a^2 \sin^2(\omega t) = \frac{m_1 m_2}{2(m_1 + m_2)} a^2 [1 - \cos(2\omega t)],$$

$$I = I_{xx} + I_{yy} = \frac{m_1 m_2}{m_1 + m_2} a^2$$

$$m_1 m_2$$

$$I_{xy} = I_{yx} = m_1 x_1 y_1 + m_2 x_2 y_2 = \frac{m_1 m_2}{2(m_1 + m_2)} a^2 \sin(2\omega t)$$

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?

(3). Quadrupole moments

$$I_{xx} = m_1 x_1^2 + m_2 x_2^2 = \frac{m_1 m_2}{m_1 + m_2} a^2 \cos^2(\omega t) = \frac{m_1 m_2}{2(m_1 + m_2)} a^2 (1 + \cos(2\omega t)),$$

$$I_{yy} = m_1 y_1^2 + m_2 y_2^2 = \frac{m_1 m_2}{m_1 + m_2} a^2 \sin \cos^2\theta = \frac{1}{2} (1 + \cos 2\theta)^2 a^2 [1 - \cos(2\omega t)],$$

$$I = I_{xx} + I_{yy} = \frac{m_1 m_2}{m_1 + m_2} a^2$$

$$I_{xy} = I_{yx} = m_1 x_1 y_1 + m_2 x_2 y_2 = \frac{m_1 m_2}{2(m_1 + m_2)} a^2 \sin(2\omega t)$$

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?

For simplicity, let's consider a circular orbit (e = 0) !

(4). The GW amplitude

$$\overline{h}^{jk}(t, \boldsymbol{x}) \approx \frac{2G}{r} \frac{d^2 I^{jk}(t-r)}{dt^2} \qquad \begin{array}{l} \mbox{Traceless-transverse} \\ = -\frac{4Ga^2 \omega^2 m_1 m_2}{(m_1 + m_2)r} \begin{pmatrix} \cos[2\omega(t-r)] & \sin[2\omega(t-r)] & 0 \\ \sin[2\omega(t-r)] & -\cos[2\omega(t-r)] & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{array}$$

✓ The frequency of GW emission (2ω) is twice of the orbital frequency of a binary star (ω)

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (4/4)?

(4). The GW amplitude

$$\overline{h}^{jk}(t, \boldsymbol{x}) \approx \frac{2G}{r} \frac{d^2 I^{jk}(t-r)}{dt^2}$$

$$= -\frac{4Ga^2 \omega^2 m_1 m_2}{(m_1 + m_2)r} \begin{pmatrix} \cos[2\omega(t-r)] & \sin[2\omega(t-r)] & 0\\ \sin[2\omega(t-r)] & -\cos[2\omega(t-r)] & 0\\ 0 & 0 \end{pmatrix}$$

$$\frac{\text{Kepler's law}}{h = \frac{4Ga^2 \omega^2 m_1 m_2}{(m_1 + m_2)r}} = \frac{4Ga^2 \times G(m_1 + m_2)/a^3}{(m_1 + m_2)r} = \frac{2Gm_1 \times 2Gm_2}{ar}$$

$$h = \underbrace{\frac{2Gm_1 \times 2Gm_2}{\mathsf{c}^2}}_{ad} \approx \frac{(1.4 \times 3)^2}{2 \times 10^6 \times 2 \times 10^{17}} \approx 4 \times 10^{-23}$$

✓ The GW is not that small for ground detectors. Important: The GW amp. increases with time! ✓ The GW frequency is, Period: P = 7.75 hours

 $2\omega = 0.45 \mathrm{mHz}$

Too low to detect by interferometers on the earth! Why did LIGO make it to detect GWs (from BHs) ?

Why even now, difficult to detect GWs from Hulse-Taylor pulsar (4/4)?

✓ The GW is not that small for ground detectors. Important: The GW amp. increases with time.

✓ The GW frequency is, Period: P = 7.75 hours

 $2\omega = 0.45 \mathrm{mHz}$

Too low to detect by interferometers on the earth! Why did LIGO make it to detect GWs (from BHs) ?

Success of GR in Hulse-Taylor pulsar (1/5)

Success of General Relativity in Hulse-Taylor pulsar (2/5)

(5). Decrease rate of the orbital spin period (e.g., increase of the orbital frequency)

Success of General Relativity in Hulse-Taylor pulsar (3/5)

✓ The Chirp signal

by 3.5 Post-Newtonian (PN) techniques

(e.g., Blanchet, Living Reviews, 2013,)

Equation of motion of m_1

$$a_{1} = -\frac{Gm_{2}}{r_{12}^{2}} a_{12} + \frac{1}{c^{2}} \left\{ \frac{[Gm_{2}n_{12}^{2}]}{[T_{12}^{2}]} (\frac{1}{36}(n_{2}v_{2})^{4} - \frac{1}{5} \frac{1}{5}(n_{2}v_{2})^{4} + \frac{1}{7} + \frac{1}{2}(n_{2}v_{1})^{4} + \frac{1}{7} + \frac{1}{2}(n_{2}v_{1})^{4} + \frac{1}{7} + \frac{1}{2}(n_{2}v_{1})^{4} + \frac{1}{7} + \frac{1}{2}(n_{2}v_{1})^{2} + \frac{1}{2}(n_{2}v_{1})^{2}(n_{2}v_{2}) - \frac{72}{72}(n_{2}v_{1})^{2}(n_{2}v_{2})^{2} + \frac{1}{2}(n_{2}v_{1})(n_{2}v_{2})^{2} + \frac{1}{2}(n_{2}v_{1})^{2}(n_{2}v_{2}) - \frac{1}{2}(n_{2}v_{1})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{1})^{2}(n_{2}v_{2})^{2} + \frac{1}{2}(n_{2}v_{1})^{2}(n_{2}v_{2})^{2} + \frac{1}{2}(n_{2}v_{2})^{2}(n_{2}v_{2})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{2})^{2}(n_{2}v_{2})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{2})^{2}(n_{2}v_{2})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{2})^{2}(n_{2}v_{2})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{2})^{2}(n_{2}v_{2}) + \frac{1}{2}(n_{2}v_{2})^{2}(n$$

Success of General Relativity in Hulse-Taylor pulsar (4/5)

Success of General Relativity in Hulse-Taylor pulsar (5/5)

 Three evolution phases of binary merger (see lecture by Bauswein !)

The chirp GW signal:

S/N ~

(s|h)

 $< (n|h)^2$

The waveforms generally well-modeled by Post-Newtonian techniques (theory). (see, Sathyaprakash & Schutz (2011) Living review)

$$\frac{s(t)}{n(t)}$$
, not accurate...more correctly...

$$= \sim 10 \qquad (s \mid h) \approx \int \frac{df}{S_n(f)} s(f) h^*(g)$$

h (f) :template (= $h\sqrt{N}$ (Thorne (1987)) (for quasi-periodic signals of N cycles , e.g., chirp, **matched filtering**) S_n (f)= spectral noise density

Success of Ge

Three evolution phases of the second seco (see lecture by Bauswei

The chirp GW signal: The waveforms generally by Post-Newtonian techr See, Sathyaprakash & Schutz (

h (f) :template (= $h\sqrt{N}$ (Thorne (1987)) (for quasi-periodic signals of *N* cycles , e.g., chirp, matched filtering) S_n (f)= spectral noise density

Quiz: Can one expect GW emission from axisymmetric (2D) stars ?

$$I_{xx} = \int \rho(R, Z) R^2 \cos^2 \phi R \, dR \, dz \, d\phi = \pi \int \rho(R, Z) R^3 \, dR \, dz,$$

$$I_{yy} = \int \rho(R, Z) R^2 \sin^2 \phi R \, dR \, dz \, d\phi = I_{xx},$$

$$I_{xy} = \int \rho(R, Z) R^2 \sin \phi \, \cos \phi R \, dR \, dz \, d\phi = 0.$$

$$I_{zz} = \int \rho(R, Z) z^2 R \, dR \, dz \, d\phi = 2\pi \int \rho(R, Z) z^2 R \, dR \, dz$$

$$I_{xz} = I_{yz} = 0.$$

(e.g., Takiwaki,KK, Suwa (2012,2014), ApJ)

1st discovery: GW150914

Abbott et al. (PRL), 2016, 116, 061102

Applications to GW formulae to GW150914

Applications to GW formulae to GW150914

Applications to GW formulae to GW150914

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

Future Roadmaps

☆ Note; distance to binary-NSs

One-sentence summary

1st. General Introduction **Why GWs**? To see the inner-workings of BH/NS forming cites ! Basics of GW Physics and Detection From the Einstein equations (quadrupole formulae), to applications how to extract basic information of binary parameters (Hulse-Taylor pulsar) First detection of GW150914 The GW astronomy started ! (multimessenger analysis important, Lectures: G.M. Pinedo, A Bauswein, R.Diehl !) 2nd. Core-collapse supernova theory: The space-time evolution of dying stars

Useful references:

- 1. General relativity: textbook by Landau, Lifshitz
- 2. Concise review of GW physics and detection: by Michele Maggiore

3. Brief overview of GW150914

Ann. Phys. (Berlin) 529, No. 1–2, 1600209 (2017) / DOI 10.1002/andp.201600209

The basic physics of the binary black hole merger GW150914

Gravitational

VOLUME & THE

Waves

LIGO Scientific and VIRGO Collaborations*,**

Received 5 August 2016, revised 21 September 2016, accepted 22 September 2016 Published online 4 October 2016

The Classical Theory of Fields

Fourth Revised English Edition

Course of Theoretical Physics Volume 2

annalen **physik**

Gravitational Waves

OXFORD