For the next Galactic event (several/century..), CCSN GW signatures should be clarified in advance : Hydrodynamics modeling of exploding stars !

from Takiwaki, KK, Suwa (2014), ApJ

1st. General Introduction **Why multi-messengers (inc. GW)**? **V** Basics of GW Physics and Detection First detection of GW150914 2nd. Core-collapse supernova theory: how to solve "numerically" the space-time evolution of dying stars (40 min)**3rd.** GW signatures from core-collapse supernovae: what we can learn from **future GW observation ?** (60 min)

Standard scenario of core-collapse SNe

(e.g., Kotake+06, Foglizzo+14, Mezzacappa+15, Janka17 for a review)

Standard scenario of core-collapse SNe

(e.g., Kotake+06, Foglizzo+14, Mezzacappa+15, Janka17 for a review)

Two candidate mechanisms of core-collapse supernovae (Lecture by T. Foglizzo, reviews in Janka ('17), Müller ('16), Foglizzo+('15), Burrows('13), Kotake+ ('12))

	Neutrino mechanism	MHD mechanism	
Progenitor	Non- or slowing- rotating star $(\Omega_0 < \sim 0.1 \text{ rad/s})$	Rapidly rotation with strong B ($\Omega_0 > -\pi \text{ rad/s}, B_0 > -10^{11} \text{ G}$)	
Key ingredients	 ✓ Turbulent Convection and SASI (e.g., Kazeroni, Guilet, Foglizzo, (2017)) ✓ Precollapse Inhomogenities/structures (e.g., B.Mueller et al. (17), Suwa & Mueller (16)) ✓ Novel microphysics: Bollig+(17), Fischer+(18) 	Ient Convection and SASI proni, Guilet, Foglizzo, (2017))✓ Field winding and the MRI (e.g., Obergaulinger & Aloy (2017), Rembiasz et a (2016), Moesta et al. (2016), Masada + (2015))Ilapse Inhomogenities/structures Mueller et al. (17), Suwa & Mueller (16))✓ Non-Axisymmetric instabilities (e.g., Takiwaki, et al. (2016), Summa et al. (2017))	
Progenitor fraction	Main players	~<1% (Woosley & Heger (07), ApJ): (hypothetical link to magnetar, collapsar)	
Volume 5.575 4.750 Mm: 1.160 20 M _{sun} from Melson et a	Tpb=2 ms 5.00 9. 11.2 M _{sun} from Nakamura e	15 M _{sun} star from Lentz et al. ('15) et al. in prep. C15-3D 400 ms	
r z x 192 km	x x 400 km	400 km	

(see also, Burrows et al. ('17), Melson et al. ('15), Lentz et al. ('15), Roberts et al. ('16), B. Mueller ('15), Takiwaki et al. ('16))

Requirements of CCSN simulations

Quick review; how to evolve hydrodynamics equations (1/3)

Hydrodynamics equations: Non-linear \Rightarrow Computational Fluid Dynamics (CFD)

Quick review; how to evolve hydrodynamics equations (1/3)

Closed set of hydro equations:

Mass conservation

 $\frac{\partial \rho}{\partial t} + \operatorname{div} \rho \mathbf{v} = 0$

Momentum conservation

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial \pi_{i\,j}}{\partial x_j} = \rho g_i$$

$$\pi_{ij} = \rho v_i v_j + \delta_{ij} p$$

variables

p

e

g_i=-∇_iΦ

Energy conservation

$$\frac{\partial}{\partial t}(\rho e) + \operatorname{div}\left[\left(\rho e + p\right)\vec{v}\right] = -\rho\vec{v} \operatorname{grad} \Phi$$

1 Equation of State: EOS :
$$P(\rho, T, Y_e)$$

Poission eq. $\Delta \Phi = 4\pi G \rho$

Hydrodynamics equations: Non-linear ⇒ Computational Fluid Dynamics (CFD)

CFD: in essence.. The Riemann problem

CFD: in essence.. The Riemann problem

Quick review; how to evolve hydrodynamics equations (3/3)

3D Newtonian simulations of rapidly rotating core-collapse of a 27 M_{sun} star ($\Omega_0 = 2$ rad/s) (from Takiwaki & Kotake, 2018, MNRAS Letters)

Why GR ? Introduction to Numerical Relativity

See textbooks by Baumgarte and Shapiro, Shibata, Rezzolla

Solving dynamics of space-time (2/4)

Need to determine

Again, the Minkowski metric.

$$g^{\mu\nu} \longrightarrow \eta^{\mu\nu} \equiv \text{diag}(-1, 1, 1, 1)$$

 $^{2}\phi = 4\pi G\rho$

Need to solve Einstein equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

 $R_{\mu
u}$ Ricci tensor

Energy-momentum tensor

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$

 $R_{\mu\nu}$, R are the functional of $g_{\mu\nu}$

$$\begin{split} R_{\mu\nu} &= \Gamma^{\alpha}{}_{\mu\nu,\alpha} - \Gamma^{\alpha}{}_{\mu\alpha,\nu} + \Gamma^{\alpha}{}_{\gamma\alpha}\Gamma^{\gamma}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\gamma\nu}\Gamma^{\gamma}{}_{\mu\alpha} \\ \Gamma^{\alpha}{}_{\beta\gamma} &\equiv \frac{1}{2}g^{\alpha\mu}(g_{\mu\beta,\gamma} + g_{\mu\gamma,\beta} - g_{\beta\gamma,\mu}) \end{split} \qquad R = R^{\beta}{}_{\beta} \end{split}$$
 Ricci scalar

In the limit of $R_s/R \rightarrow 0$

ne sota le gislature

(Day + faulsen)

= morons

Solving dynamics of space-time (3/4)

✓ 3+1 decomposition (see textbooks by E.Gougoulhon, M. Shibata, L. Rezzolla..)

Solving dynamics of space-time (4/4)

 $(\partial_t - \mathcal{L}_\beta)\tilde{A}_{ij}$

 $(\partial_t - \mathcal{L}_{\beta})$

With $g_{\mu\nu}$, one can solve the (radiation-)hydrodynamics equations !

Baumgarte-Shibata-Shapiro-Nakamura (BSSN) formalism : ADM numerically unstable

BSSN variables:

$$\phi \equiv \frac{1}{12} \ln[\det(\gamma_{ij})] ,$$
$$\tilde{\gamma}_{ij} \equiv e^{-4\phi} \gamma_{ij} ,$$

$$\begin{split} K &\equiv \gamma^{ij} K_{ij} \;, \\ \tilde{A}_{ij} &\equiv e^{-4\phi} \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right) \;, \\ \tilde{\Gamma}^i &\equiv -\tilde{\gamma}^{ij}_{,j} \;. \end{split}$$

$$(\partial_t - \mathcal{L}_{\beta})\tilde{\gamma}_{ij} = -2\alpha\tilde{A}_{ij}$$
(11)

$$(\partial_t - \mathcal{L}_{\beta})\phi = -\frac{1}{6}\alpha K$$
(12)

$$= e^{-4\phi} \left[\alpha(R_{ij} - 8\pi\gamma_{i\mu}\gamma_{j\nu}T^{\mu\nu}_{(\text{total})} - D_i D_j \alpha\right]^{\text{trf}} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{\gamma}^{kl}\tilde{A}_{jl})$$
(13)

$$K = -\Delta\alpha + \alpha(\tilde{A}_{ij}\tilde{A}^{ij} + K^2/3) + 4\pi\alpha \left(n_{\mu}n_{\nu}T^{\mu\nu}_{(\text{total})} + \gamma^{ij}\gamma_{i\mu}\gamma_{j\nu}T^{\mu\nu}_{(\text{total})}\right)$$
(14)

$$\begin{aligned} (\partial_t - \beta^k \partial_k) \tilde{\Gamma}^i &= 16\pi \, \tilde{\gamma}^{ij} \gamma_{i\mu} n_\nu T^{\mu\nu}_{(\text{total})} \\ &- 2\alpha \left(\frac{2}{3} \tilde{\gamma}^{ij} K_{,j} - 6\tilde{A}^{ij} \phi_{,j} - \tilde{\Gamma}^i_{jk} \tilde{A}^{jk} \right) \\ &+ \tilde{\gamma}^{jk} \beta^i_{,jk} + \frac{1}{3} \tilde{\gamma}^{ij} \beta^k_{,kj} - \tilde{\Gamma}^j \beta^i_{,j} \\ &+ \frac{2}{3} \tilde{\Gamma}^i \beta^j_{,j} + \beta^j \tilde{\Gamma}^i_{,j} - 2\tilde{A}^{ij} \alpha_{,j}, \end{aligned}$$
(15)

General Relativistic Simulations (limited to CCSN context) :

 ✓ AEI-Southampton-Amsterdam Caltech collaboration: (e.g., Cactus code <u>http://cactuscode.org</u>)

✓ Our team: Kuroda, KK, Takiwaki

 Monash-Garching group (Conformally flatness approximation) Mueller, Janka et al.

Solving dynamics of neutrino(v) radiation field (1/3) $f_{(\nu)}(t,r,\theta,\phi,E_{\nu},\phi_{\nu},\phi_{\nu})$

✓ Neutrino propagation in supernova core

Levels of approximations:

$$f(t, r, \theta, \phi, E, \theta_p, \phi_p)$$

$$E_R(t, r, \theta, \phi, E) = \int d\theta_p \, d\phi_p \, f$$

$$E_R(t, r, \theta, \phi) = \int dE \, d\theta_p \, d\phi_p \, f$$

Neutrino distribution function

β-equilibrium is achieved

 $f_{\nu}(E_{\nu}) = \frac{1}{\exp(E_{\nu} - \mu_{\nu})/k_{\rm B}T + 1}$

only in the high-density region !

⇒ Neutrino occupation probability : f_v in the energy space needs to be accurately treated (bottom line).

"MGMA"(6 dimensional problem)

"MG"(Multi energy-Group) (e.g., MGFLD, M1, IDSA) "Gray (no energy-dependence)"

Solving dynamics of <u>neutrino(v)</u> radiation field (1/3) $f_{(\nu)}(t,r,\theta,\phi,E_{\nu},\phi_{\nu},\phi_{\nu})$

Current Status of CCSN simulations

Disclaimer: only CCSNs

General relativistic neutrino transport with detailed v transport: Vertex-CoCoNuT code B. Mueller et al (2012), ApJ

L.H.S. of Boltzmann eq. is super messy...

$$\begin{split} W \left[\frac{\xi}{\alpha} \left(\frac{\partial f}{\partial t} - \beta^r \frac{\partial f}{\partial r} \right) + \frac{\nu}{\phi^2} \frac{\partial f}{\partial r} \right] &- \frac{\varepsilon W^3}{r \alpha \phi^3} \frac{\partial f}{\partial \varepsilon} \left\{ \beta^r \phi^3 \left(-\psi - r \mu \frac{\partial v_r}{\partial r} \right) + v_r^2 \phi \left[\beta^r \phi \left(2r \frac{\partial \phi}{\partial r} - \psi \phi \right) + r \left(-\mu \frac{\partial \alpha}{\partial r} + \mu^2 \phi^2 \frac{\partial \beta^r}{\partial r} - \frac{\partial \phi^2}{\partial t} \right) \right] + v_r^3 \left[r \mu \phi \left(-\mu \frac{\partial \alpha}{\partial r} + \frac{\partial \beta^r \phi^2}{\partial r} - \frac{\partial \phi^2}{\partial t} \right) - \psi \frac{\alpha}{\phi} \frac{\partial r \phi^2}{\partial r} \right] + \phi \left[r \mu \left(\mu \alpha \frac{\partial v_r}{\partial r} + \frac{\partial \alpha}{\partial r} + \phi^2 \left(-\mu \frac{\partial \beta^r}{\partial r} + \frac{\partial v_r}{\partial t} \right) \right) + r \frac{\partial \phi^2}{\partial t} - r \beta^r \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + 2r \psi \frac{\partial \phi}{\partial r} + \phi^2 \left(\mu \frac{\partial v_r}{\partial t} - \frac{\partial \beta^r}{\partial r} \right) + \frac{\partial \phi^2}{\partial t} \right] \right\} + \frac{W^3 \left(1 - \mu^2 \right)}{r \alpha \phi^3} \frac{\partial f}{\partial \mu} \left\{ \alpha \left[\phi \left(\frac{\xi}{W^2} - r \nu \frac{\partial v_r}{\partial r} \right) + 2r \frac{\xi}{W^2} \frac{\partial \phi}{\partial r} \right] + \phi \left[\beta \phi^2 \left(r \xi \frac{\partial v_r}{\partial r} - \frac{\nu}{W^2} \right) - \frac{r}{W^2} \left(\xi \frac{\partial \alpha}{\partial r} - \nu \phi^2 \frac{\partial \beta^r}{\partial r} \right) - r \xi \phi^2 \frac{\partial v_r}{\partial t} \right] \right\} = \mathfrak{C}[f], \end{split}$$

Full-3D-GR code with multi-energy neutrino transport (M1)

✓ "FGR" : Fully General Relativistic code with multi-energy neutrino transport Kuroda, Takiwaki, and KK, ApJS. (2016) (see, Zelmani code by Robert et al. (2016)) The marriage of BSSNOK formalism (3D GR code, Kuroda & Umeda (2010, ApJS)) + M1 scheme; Shibata+2011, Thorne 1981, (see also, Just et al. (2015), O'Connor (2015) for recent work) ✓ Evolution equation of neutrino radiation energy $\partial_t \sqrt{\gamma} E_{(\varepsilon)} + \partial_i \sqrt{\gamma} (\alpha F_{(\varepsilon)}^i - \beta^i E_{(\varepsilon)}) + \sqrt{\gamma} \alpha \partial_{\varepsilon} (\varepsilon \tilde{M}_{(\varepsilon)}^{\mu} n_{\mu})$ $= \sqrt{\gamma} (\alpha P_{(\varepsilon)}^{ij} K_{ij} - F_{(\varepsilon)}^i \partial_i \alpha - \alpha S_{(\varepsilon)}^{\mu} n_{\mu})$, \checkmark Evolution equation of radiation flux $\partial_t \sqrt{\gamma} F_{(\varepsilon)_i} + \partial_j \sqrt{\gamma} (\alpha P_{(\varepsilon)_i}^j - \beta^j F_{(\varepsilon)_i}) - \sqrt{\gamma} \alpha \partial_{\varepsilon} (\varepsilon \tilde{M}_{(\varepsilon)}^{\mu} \gamma_{\mu})$ $= \sqrt{\gamma} (\alpha P_{(\varepsilon)}^{ij} K_{ij} - F_{(\varepsilon)}^i \partial_i \alpha - \alpha S_{(\varepsilon)}^{\mu} n_{\mu})$, $\neg (-E_{(\varepsilon)} \partial_i \alpha + F_{(\varepsilon)_j} \partial_i \beta^j + (\alpha/2) P_{(\varepsilon)}^{jk} \partial_i \gamma_{jk} + \alpha S_{(\varepsilon)}^{\mu} \gamma_{i\mu})$ $= \sqrt{\gamma} [-E_{(\varepsilon)} \partial_i \alpha + F_{(\varepsilon)_j} \partial_i \beta^j + (\alpha/2) P_{(\varepsilon)}^{jk} \partial_i \gamma_{jk} + \alpha S_{(\varepsilon)}^{\mu} \gamma_{i\mu}]$ $P_{(\varepsilon)}^{ij} = \frac{3\chi_{(\varepsilon)} - 1}{2} P_{\text{thin}(\varepsilon)}^{ij} + \frac{3(1 - \chi_{(\varepsilon)})}{2} P_{\text{thick}(\varepsilon)}^{ij}$ $\chi_{(\varepsilon)} = \frac{5 + 6F_{(\varepsilon)}^2 - 2F_{(\varepsilon)}^3 + 6F_{(\varepsilon)}^4}{15}$

General relativistic neutrino transport with detailed v transport: Vertex-CoCoNuT code B. Mueller et al (2012), ApJ

 $ds^2 = -$

Conformal flatness approximation (+)
 L.H.S. of Boltzmann eq. is super messy...

$W\left[\frac{\xi}{\alpha}\left(\frac{\partial f}{\partial t}-\beta^r\frac{\partial f}{\partial r}\right)+\frac{\nu}{\phi^2}\frac{\partial f}{\partial r}\right]-\frac{\varepsilon W^3}{r\alpha\phi^3}\frac{\partial f}{\partial\varepsilon}\left\{\beta^r\phi^3\left(-\psi-r\mu\frac{\partial v_r}{\partial r}\right)+v_r^2\phi\left[\beta^r\phi\left(2r\frac{\partial\phi}{\partial r}-\psi\phi\right)\right]\right\}$
$r\left(-\mu\frac{\partial\alpha}{\partial r}+\mu^2\phi^2\frac{\partial\beta^r}{\partial r}-\frac{\partial\phi^2}{\partial t}\right)\right]+v_r^3\left[r\mu\phi\left(-\mu\frac{\partial\alpha}{\partial r}+\frac{\partial\beta^r\phi^2}{\partial r}-\frac{\partial\phi^2}{\partial t}\right)-\psi\frac{\alpha}{\phi}\frac{\partial r\phi^2}{\partial r}\right]+$
$\phi \left[r \mu \left(\mu \alpha \frac{\partial v_r}{\partial r} + \frac{\partial \alpha}{\partial r} + \phi^2 \left(-\mu \frac{\partial \beta^r}{\partial r} + \frac{\partial v_r}{\partial t} \right) \right) + r \frac{\partial \phi^2}{\partial t} - r \beta^r \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + \frac{\partial \phi^2}{\partial r} \right] + v_r \alpha \left[\phi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + v_r \alpha \left[\psi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) + v_r \alpha \left[\psi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right) \right] \right] + v_r \alpha \left[\psi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right] + v_r \alpha \left[\psi \left(\psi + r \mu \frac{\partial v_r}{\partial r} \right] \right] \right]$
$2r\psi\frac{\partial\phi}{\partial r} + \phi^2\left(\mu\frac{\partial v_r}{\partial t} - \frac{\partial\beta^r}{\partial r}\right) + \frac{\partial\phi^2}{\partial t}\bigg]\bigg\} + \frac{W^3\left(1-\mu^2\right)}{r\alpha\phi^3}\frac{\partial f}{\partial\mu}\bigg\{\alpha\left[\phi\left(\frac{\xi}{W^2} - r\nu\frac{\partial v_r}{\partial r}\right) + 2r\frac{\xi}{W^2}\frac{\partial\phi}{\partial r}\right)\bigg\}$
$\phi \left[\beta \phi^2 \left(r \xi \frac{\partial v_r}{\partial r} - \frac{\nu}{W^2} \right) - \frac{r}{W^2} \left(\xi \frac{\partial \alpha}{\partial r} - \nu \phi^2 \frac{\partial \beta^r}{\partial r} \right) - r \xi \phi^2 \frac{\partial v_r}{\partial t} \right] \right\} = \mathfrak{C}[f],$

	Table 2 Neutrino Physics Input	
Process	Full Rates	
	(G11, G15, M15, N15)	
$vA \rightleftharpoons vA$	Horowitz (1997; ion-ion correlations)	
	Langanke et al. (2008; inelastic contribution)	
$v e^{\pm} \rightleftharpoons v e^{\pm}$	Mezzacappa & Bruenn (1993)	
$\nu N \rightleftharpoons \nu N$	Burrows & Sawyer (1998) ^a	
$v_e n \rightleftharpoons e^- p$	Burrows & Sawyer (1998) ^a	
$\bar{v}_e p \rightleftharpoons e^+ n$	Burrows & Sawyer (1998) ^a	
$v_e A' \rightleftharpoons e^- A$	Langanke et al. (2003)	
$v\bar{v} \rightleftharpoons e^- e^+$	Bruenn (1985); Pons et al. (1998)	
$\nu \bar{\nu} NN \rightleftharpoons NN$	Hannestad & Raffelt (1998)	
$v_{\mu,\tau} \bar{v}_{\mu,\tau} \rightleftharpoons v_e \bar{v}_e$	Buras et al. (2003)	
$ \stackrel{(-)}{\nu}_{\mu,\tau} \stackrel{(-)}{\nu}_{e} \rightleftharpoons \stackrel{(-)}{\rightleftharpoons} \stackrel{(-)}{\nu}_{\mu,\tau} \stackrel{(-)}{\nu}_{e} $	Buras et al. (2003)	

Full-3D-GR code with multi-energy neutrino transport (M1)

"FGR" : Fully General Relativistic code with multi-energy neutrino transport

Kuroda, Takiwaki, and KK, ApJS. (2016)

The marriage of **BSSNOK formalism** (3D GR code, Kuroda & Ur + **M1 scheme**; Shibata+2011, Thorne 1981, (see also, Just et al. (2015)

✓ Evolution equation of neutrino radiation energy

$$\partial_t \sqrt{\gamma} E_{(\varepsilon)} + \partial_i \sqrt{\gamma} \left(\alpha F_{(\varepsilon)}^i - \beta^i E_{(\varepsilon)} \right) + \sqrt{\gamma} \alpha \partial_{\varepsilon} \left(\varepsilon \tilde{M}_{(\varepsilon)}^{\mu} n_{\mu} \right) \\ = \sqrt{\gamma} \left(\alpha P_{(\varepsilon)}^{ij} K_{ij} - F_{(\varepsilon)}^i \partial_i \alpha - \alpha S_{(\varepsilon)}^{\mu} n_{\mu} \right),$$

Analytic Closure with the use of Minerbo-typ

$$P_{(\varepsilon)}^{ij} = \frac{3\chi_{(\varepsilon)} - 1}{2} P_{\text{thin}(\varepsilon)}^{ij} + \frac{3(1 - \chi_{(\varepsilon)})}{2} P_{\text{thick}(\varepsilon)}^{ij}$$

(see, Zelmani code by Robert et al. (2016))

Table 1 The Opacity Set Included in this Study and their References

Process	Reference	
$ \begin{array}{l} n\nu_{e}\leftrightarrow e^{-}p\\ p\bar{\nu}_{e}\leftrightarrow e^{+}n\\ \nu_{e}A\leftrightarrow e^{-}A'\\ \nu p\leftrightarrow \nu p\\ \nu n\leftrightarrow \nu n\\ \nu A\leftrightarrow \nu A\\ \nu e^{\pm}\leftrightarrow \nu e^{\pm}\\ e^{-}e^{+}\leftrightarrow \nu \bar{\nu}\\ NN\leftrightarrow \nu \bar{\nu}NN \end{array} $	Bruenn (1985), Rampp & Janka (2002 Bruenn (1985) Bruenn (1985) Bruenn (1985) Hannestad & Raffelt (1998)	✓ Base-line opacity (t.b.updated)

- Why multi-messengers (inc. GW).
 Basics One-sentence Summary etection
- 2nd . Core-collapse supernova theory: how to solve "<u>numerically</u>" the space-time evolution of dying stars
 - ⇒ Numerical relativity (space-time) + CFD (hydrodynamics) + Neutrino Boltzmann equation (with
 - **Capproximations**) self consistently !
- **3rd. GW signatures from core-collapse supernovae:** what we can learn from future GW observation ?

Useful references

Available online at www.sciencedirect.com

PHYSICS REPORTS

Physics Reports 442 (2007) 38-74

www.elsevier.com/locate/physrep

- 1. Review on Core-Collapse Supernova Theory
- 2. Books on numerical relativity

H.-Th. Janka^{a,*}, K. Langanke^{b,c}, A. Marek^a, G. Martínez-Pinedo^b, B. Müller^a

^aMax-Planck-Institut für Astrophysik, Garching, Germany ^bGesellschaft für Schwerionenforschung, Darmstadt, Germany ^cInstitut für Kernphysik, Technische Universität Darmstadt, Germany

> Available online 17 February 2007 editor: G.E. Brown

Lecture Notes in Physics 846

Eric Gourgoulhon

3+1 Formalism in General Relativity Bases of Numerical Relativity

Springer

3. Books on radiation hydrodynamics