
Gerd Röpke, Rostock 

40th Max Born Symposium, Wroclaw 
October 11, 2019 

Bound states in many-fermion systems 



Structure of matter 

Fermion systems: ideal Fermi gases 
 
Interaction - correlations 
 
Low densities: bound states, quantum condensates 
High densities: condensed phase 
 
•  Plasma physics:  Ionization potential depression (IPD) [PRE (2019)] 
•  Nuclear physics: Weakly bound nuclei in stellar matter [in preparation] 
•  QCD:  Deconfinement, Quark – Gluon phase transition in neutron-star mergers 
    [Bauswein et al., Hadron-quark phase transition, PRL 122, 061102 (2019)] 



In-medium Schrödinger equation 

Consistent treatment of the two-particle problem: 
in-medium wave equation 

R. Zimmermann, K. Kilimann,  
W. D. Kraeft, D. Kremp and G. Röpke 
Phys. Stat. sol. (b) 90, 175 (1978) 

W.-D. Kraeft, D. Kremp, W. Ebeling, G. Röpke 
Quantum Statistics of Charged Particle Systems, 
Akademie-Verlag, Berlin 1986 

Pauli blocking, Fock self-energy shift, Fermi fct. fe 

dynamical screening, dynamical self-energy 

V(q) --> dynamically screened Coulomb interaction 

dielectric function 



Preliminary, from Tilo Döppner et al., LLNL Ionization potential depression (IPD) 



Degenerate plasmas: Carbon 

Effects of degeneracy on energy level shifts 

In-medium Schroedinger equation for C5+ = C6+ + e 

Pauli blocking 

Fock shift 

< 1 

“Fermi hole” 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (atom, ions,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of binding energies 

W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz,  
G.Roepke,  J. Phys. A: Math. Theor. 42, 214033 (2009) 
 
W. Ebeling, W-D. Kraeft, G.Roepke, Contr. Plasma Phys. 52, 7  (2012)  

H-Plasma: 
Shift of the ground state 
and two excited states, 
Pauli-Fock-approximation, 
T=0 



IPD and dissolution of bound states 

Low density limit: Chemical picture, Debye screening  

Quantum statistical approach  
(Green functions, spectral functions, self-energy, 
quasiparticle shifts of free states and bound clusters) 

Increasing density: ions are strongly correlated but classical  
(dynamical ionic structure factor, fluctuation-dissipation theorem) 
electrons become degenerated, Pauli principle 



IPD of C5+ at T=100 eV 
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Stewart-Pyatt, structure factor, Fock, and Pauli shifts 
Improve: shift of the bound state, broadening of bound states,  
ionic structure factor and band formation 



Ionization degree of C plasmas 
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Present work: 
DFT-MD simulations 
Density of states, 
Conductivity 
(R. Redmer, 
M. Bethkenhagen) 



Preliminary, from Tilo Döppner et al., LLNL 



Nuclear Systems 

•  strongly correlated quantum systems 
•  nuclear structure 
•  heavy ion collisions 
•  astrophysics: compact objects 



Stellar matter: Supernova explosion 

Simulation by 
Tobias Fischer 

Snapshot: 
Temperature, 
Density, 
Proton fraction, 
Entropy, 
Neutrino flux 
Cluster formation 



Nuclear matter phase diagram 
Core collapse supernovae 

T. Fischer, GSI Darmstadt 



Composition? Ideal mixture of reacting nuclides 

mass number A, 
charge ZA, 
energy EA,ν,K, 
ν  internal quantum number, 
K  center of mass momentum 

Chemical equilibrium, mass action law (Saha), 
Nuclear Statistical Equilibrium (NSE) 

Excited states? Scattering states? 



Asymmetric nuclear light clusters in 
supernova matter  

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Effective wave equation  
for the deuteron in matter 
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Fermi distribution function 

Pauli-blocking 

BEC-BCS crossover: 
Alm et al.,1993 

Add self-energy 

Thouless criterion 

€ 

Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation 

Correlated medium? 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (atom, ions,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of Binding Energies of Light Clusters 

S. Typel, G. Röpke, T. Klähn,  
D. Blaschke, and H. H. Wolter. 
PRC 81, 015803 (2010) 

Symmetric matter 



Deuteron-like scattering phase shifts 
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G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) 
Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654] 

deuteron bound state -2.2 MeV 

Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
⇤3

e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)

Tamm-Dancoff 



Example: 5He 
Partial density 

virial coefficient nuclear stat. equ. 

generalized Beth-Uhlenbeck 
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C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) ratio generalized Beth-Uhlenbeck/NSE 



Asymmetric nuclear light clusters in 
supernova matter  

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 



Quarks: Pauli – Mott - Astrophysics  

“Mott mechanism and  
hadronic-to-quark matter phase transition”,  
Phys. Lett. B (1985), 
Blaschke-Reinholz-Röpke-Kremp 



1989 – falling walls 



ECT*- Villa Tambosi Trento, 4. Sept. 2019 

Workshop: 
 
Light clusters in nuclei 
and nuclear matter: 
Nuclear structure and decay, 
heavy ion collisions, 
and astrophysics 

One month  ago: 
David explains the  
Mott-transition 
 



Happy Birthday to You 



Core-collapse supernovae 

Density.  
 
electron fraction, and 
 
temperature profile 
 
of a 15 solar mass supernova 
at 150 ms after core bounce 
as function of the radius. 
 
Influence of cluster formation  
on neutrino emission  
in the cooling region and 
on neutrino absorption 
in the heating region ? 
K.Sumiyoshi et al., 
Astrophys.J. 629, 922 (2005) 



Composition of supernova core 

K.Sumiyoshi, 
G. R., 
PRC 77, 
055804 (2008) 

Mass fraction X  
of light clusters  
for a post-bounce  
supernova core 



Deuteron-like scattering phase shifts 

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) 
Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654] 
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i) The relativistic dispersion relation E⌧ (p) = c
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Tamm-Dancoff 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 

€ 

E HF (p1) + E HF (p2) + E HF (p3) + E HF (p4 )[ ]( )Ψn,P (p1, p2, p3, p4 )

+ (1− f p1 − f p2 )V
p1$ ,p2$

∑ (p1, p2;p1$, p2$)Ψn,P (p1$, p2$, p3, p4 )

+ permutations{ }
= En,PΨn,P (p1, p2, p3, p4 )

Thouless criterion  
for quantum condensate: 

En,P=0(T,µ) = 4µ  



Light unstable clusters 

arXiv:1812.09494 

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 


