

Quantum statistical approach to transport and optical properties in warm dense matter Heidi Reinholz Rostock University

800 years Rostock (1218-2018)
600 years University (1419-2019)
60 years Prof. Dr. David Blaschke
>40 years of friendship (since 1978)

- Motivation
- Diagnostics some examples
- Dielectric function &

dynamical collision frequency -

using the generalized Zubarev formalism

- Diagnostics more on examples
- Outlook

Motivation

Dense plasma & warm dense matter

ICF @ NIF, Livermore

Diagnostics

- Dense plasma & warm dense matter
- Diagnostics some examples
 - ✓ K_{α} fluorescence (IPD)

ionization potential depression

shock compressed aluminum D.J. Hoarty et al., PRL **110**, 265003 (2013)

Diagnostics

- Dense plasma & warm dense matter
- Diagnostics some examples
 - ✓ K_{α} fluorescence (IPD)
 - ✓ Thomson scattering in AI

Diagnostics

- Dense plasma & warm dense matter
- Diagnostics some examples
 - ✓ K_{α} fluorescence (IPD)
 - ✓ Thomson scattering in AI
 - Inert gases (dc conductivity, reflectivity)

electron-atom cross section

Outline

- Dense plasma & warm dense matter
- Diagnostics some examples
 - ✓ K_{α} fluorescence (IPD)
 - ✓ Thomson scattering in AI
 - Inert gases (dc conductivity)
- Theory generalized Zubarev formalism

Dense plasma

correlated Coulomb systems

- collisions
- medium effects: dynamical screening, collective excitations
- bound states, continuum correlations

$$\hat{H} = \sum_{p} E_{p} \hat{a}_{p}^{\dagger} \hat{a}_{p} + \sum_{pq} V_{\text{ei}}(q) \hat{a}_{p+q}^{\dagger} \hat{a}_{p} + \frac{1}{2} \sum_{p_{1}p_{2}q} V_{\text{ee}}(q) \hat{a}_{p_{1}+q}^{\dagger} \hat{a}_{p_{2}-q}^{\dagger} \hat{a}_{p_{2}} \hat{a}_{p_{1}}$$

many particle theories

- (linear) response theory $\hat{
 ho}(t)$
- kinetic equations $f(\vec{p},t) = \operatorname{Tr} \left\{ \hat{\rho}(t) \, \delta \hat{n}_p \right\}$

$$\vec{j}(t) = \frac{e}{m\Omega_0} \sum_p \hbar \vec{p} f(\vec{p}, t) = \frac{e}{m\Omega_0} \vec{P}_1(t) = \frac{e}{m\Omega_0} \operatorname{Tr} \left\{ \hbar \vec{p} \delta \hat{n}_p \right\}$$

$$\epsilon(\vec{k},\omega) = 1 - \frac{1}{\epsilon_0 k^2} \Pi(\vec{k},\omega) \qquad \Pi = \Pi_1 + \Pi_2 + \dots$$

Polarization function **I** from many-particle theory, cluster expansion

- Optical information: refraction index & absorption coefficient
 - Π_1 Bremsstrahlung, Π_2 spectral line profiles

$$\lim_{k\to 0} \epsilon_t(\vec{k},\omega) = \left(n(\omega) + \frac{ic}{2\omega}\alpha(\omega)\right)^2$$

■ Dynamical structure factor → Thomson scattering, IPD

$$S(\vec{k},\omega) = rac{1}{\pi V(k)} \; rac{1}{\mathrm{e}^{-eta \hbar \omega} - 1} \; \mathrm{Im} \epsilon_l^{-1}(\vec{k},\omega)$$

• for one-particle properties:

$$\Pi_1(\vec{k},\omega) = \frac{k^2}{i\omega}\sigma(\vec{k},\omega) = \frac{\epsilon_0 k^2 \omega_{\rm pl}^2}{\omega(\omega - i\nu(\vec{k},\omega))}$$

$$\lim_{k \to 0} \epsilon(\vec{k}, \omega) = 1 + \frac{i}{\epsilon_0 \omega} \sigma(\omega) = 1 - \frac{\omega_{\rm pl}^2}{\omega(\omega - i\nu(\omega))}$$

dynamical conductivity $\leftarrow \rightarrow$ static conductivity ļ

Drude formula

$$\sigma(\omega) = \frac{\omega_{\rm pl}^2}{i\omega + 1/\tau}$$

with relaxation time

$$au = rac{1}{
u} = rac{\sigma_{
m dc}}{\epsilon_0 \omega_{
m pl}^2}$$

here: generalized Zubarev formalism in linear response

Relevant observables B_m

generalized grand canonical ensemble with respect to a set of relevant observables $\{B_n\}$ from principle of maximum of the entropy leading to generalized Boltzmann equation with response parameters F_n (in linear response)

$$\langle B_m; \dot{\vec{R}}_c \rangle_z e_c \vec{E} = \sum_n \left\{ \langle B_m; \dot{B}_n \rangle_z - i\omega \langle B_m; B_n \rangle_z \right\} F_n$$

$$\operatorname{Tr} \left\{ \rho B_m \right\} = \sum_n \left(B_m; B_n \right) F_n$$

$$\frac{\mathrm{d}S(t)}{\mathrm{d}t} = \sum_n F_n(t) \operatorname{Tr} \left\{ \rho_{\mathrm{irrel}}(t) \dot{B}_n \right\}$$

choice of relevant observables is arbitary but determines

- which initial conditions/correlations are taken into account
- dynamical build up of remaining correlations
- explicit solutions after specific approximations (variational principle, perturbation theory, Green function techniques)

$$\langle B_m; \dot{\vec{R}}_c \rangle_z e_c \vec{E} = \sum_n \left\{ \langle B_m; \dot{B}_n \rangle_z - i\omega \langle B_m; B_n \rangle_z \right\} F$$

$$\operatorname{Tr} \left\{ \rho B_m \right\} = \sum_n \left(B_m; B_n \right) F_n$$

$$\frac{\mathrm{d}S(t)}{\mathrm{d}t} = \sum_n F_n(t) \operatorname{Tr} \left\{ \rho_{\mathrm{irrel}}(t) \dot{B}_n \right\}$$

- ✓ Kubo: ρ_{rel} = ρ_0 (curent-current correlations functions)
- ✓ B_n : linear momentum -> force-force correlation function (dynamical collision frequency)
- ✓ B_n : one-particle distribution function -> kinetic theory
- \checkmark B_n: two-particle distribution function -> bound states
- ✓ B_n : fluctuations { δn_p } of single-particle occupation number -> kinetic equation

 $\sigma(\omega) \propto \langle \vec{j}; \vec{j} \rangle_{\omega+i\eta}$ $\nu(\omega) = \frac{1}{\tau(\omega)} \propto \langle \vec{F}; \vec{F} \rangle_{\omega+i\eta}$ $F = F_{ei} + F_{ee} + F_{ea}$

- choose fluctuations $\{\delta n_p\}$ of single-particle occupation number as relevant observables $\{B_n\}$ and introduce response parameters $F_p(t)$

$$\delta f(\vec{p}, t) = \sum_{p'} \left(\delta \hat{n}_p, \delta \hat{n}_{p'} \right) F_{p'}(t)$$
$$\delta S(t) = -k_B \sum_p F_p(t) \ \delta f(\vec{p}, t) \le 0$$

• terms in kinetic equation can be identified

$$\frac{\partial}{\partial t} f(\vec{p}, t) = \mathbf{D} \left[f(\vec{p}, t) \right] + \mathbf{C} \left[f(\vec{p}, t) \right]$$
$$-i\omega\delta\tilde{f}(\vec{p}, \omega) = \frac{e\hbar}{m}\beta\tilde{\vec{E}}(\omega)\cdot\vec{p} f_p(1-f_p) + \mathbf{C} \left[\delta\tilde{f}(\vec{p}, \omega)\right]$$

 Kohler variational principle is generalized for arbitrary frequency: internal entropy production as functional of an arbitrary function G_p - is a maximum if G_p=F_p is solution of the linear Boltzmann equation [HR, Röpke, PRE (2012)]

Relaxation time vs Drude

collision term in Boltzmann equation

$$\mathrm{C}\left[\delta \widetilde{f}(ec{p},\omega)
ight]$$

• for relaxation time approximation, taken from static case C = - $\delta f(p) / \tau_p$ for Lorentz plasma leading to dynamical conductivity (isotropic system)

$$\sigma_{\rm KT}(\omega) = \frac{2}{3} \frac{e^2 \hbar^2 \beta}{m^2} \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{p^2 f_p (1 - f_p)}{-i\omega + 1/\tau_p}$$

- > energy dependent static collision time
- > Drude type expression is not obtained, no e-e collisions, sum rules not fulfilled
- from linear response theory: generalized Drude expression with collision frequency $v(\omega)=1/\tau(\omega)$

$$C_p[\delta \tilde{f}(\vec{p}, \omega)] = -\sum_{p'} \mathcal{L}_{pp'}(\omega) \tilde{F}_{p'}$$
$$\mathcal{L}_{pp'}(\omega) = \mathcal{L}_{pp'}^{ei}(\omega) + \mathcal{L}_{pp'}^{ee}(\omega)$$

$$\sigma_{\rm LRT}(\omega) = \frac{\epsilon_0 \omega_{\rm pl}^2}{-i\omega + \nu(\omega)}$$

Landau, Lifshitz X; HR, Röpke PRE 2012

Relaxation time vs Drude

Correction factor $r^{(2)}(\omega)$ due to higher moments, including e-e-correlations, for static case see *S. Rosmej PhD thesis 2018, CPP 56 (2016) 327*

Tschernogolovka/Russia

shock waves

- Dense plasma & warm dense matter
- Diagnostics some examples
- Theory generalized Zubarev formalism
 - ✓ Dielectric function
 - Dynamical collision frequency vs.
 Relaxation time approximation
- Diagnostics more on examples
 - Thomson scattering in AI

12.10.2019 Heid Reinholz: Dielectric function and optical properties in warm dense plasma

Traditio et Innovatio

Thomson scattering from AI foil

$$S(\vec{k},\omega) = \frac{1}{\pi V(k)} \frac{1}{\mathrm{e}^{-\beta\hbar\omega}-1} \operatorname{Im}\epsilon_l^{-1}(\vec{k},\omega)$$

Calculation of Thomson signal for (nearly) free electrons @ small wavevectors via Mermin approach, thus going beyond RPA (collisionless plasma)

$$\epsilon^{\text{Mermin}}(k,\omega) = 1 + \frac{1}{\epsilon_0 k^2} \frac{\Pi^{\text{RPA}}(k,\omega+i\nu(\omega))}{1 - \frac{1}{1 - i\omega/\nu(\omega)} \left[1 - \frac{\Pi^{\text{RPA}}(k,\omega+i\nu(\omega))}{\Pi^{\text{RPA}}(k,0)}\right]}$$

Linear response theory: introducing a complex collision frequency v(w) in RPA expression in order to take into account collisions consistently via dynamical collision frequency $v(\omega)$ from generalized Drude type expression

Thomson scattering

Thomson scattering from AI foil

 N_{e} = 1.8 10²² cm⁻³ 1 laser @ 7.98 keV Experiment Source Func. 10 μm focal spot, T=0.5eV scattering signal [arbit. units] MA (best fit) 0.8 MA (KK-conform) Θ = 24⁰ scattering angle MA (Drude) MA (Born) temperature via 0.6 SCFLY simulation code detailed balance ٠ 0.4 KK – Kramers-Kronig relation 0.2 (sum rule) 0 -30 -20 -10 0 Sperling, Rosmej et al. photon energy shift ΔE [eV] PRL 2015, JPB 50 (2017)

10

Outline

Tschernogolovka/Russia

shock waves

FLASH (XUV)

& European XFEL

- Dense plasma & warm dense matter
- Diagnostics some examples
- Theory generalized Zubarev formalism
 - ✓ Dielectric function
 - Dynamical collision frequency vs.
 Relaxation time approximation
- Diagnostics more on examples
 - Thomson scattering in AI
 - ✓ Ionization potential depression (IPD)

Traditio et Innovatio

IPD in shock commpressed Al

Continuum lowering models

12.10.2019 Heid Reinholz: Dielectric function and optical properties in warm dense plasma

IPD: quantumstatistical approach

• Change of the self-energy during an ionization process

$$i_{Z_i} \rightarrow e + i_{Z_i+1} \longrightarrow \Delta_{\text{IPD}}^{\text{ion-ion}} = \Delta_i^{\text{ion-ion}} - (\Delta_e^{\text{ion-ion}} + \Delta_{i+1}^{\text{ion-ion}})$$

Expression for IPD

$$\Delta_{IPD}^{ion-ion} \approx -\frac{(Z_i+1)e^2}{2\pi^2\epsilon_0 r_{\rm WS}} f(\Gamma_i) \int_0^\infty \frac{dq}{q^2} S_{ii}^{ZZ}(q)$$

Parameter function $F(\Gamma_i)$ via charge neutrality

1 low density (weak coupling): DH limit

- ② high density (strongly coupled): IS model
- ③ transition from SP model to EK model with increasing coupling parameter

Lin, Röpke, Kraeft, HR, PRE 96 (2017)

 $f(\Gamma_i) = \frac{3\Gamma_i}{\sqrt{(9\pi/4)^{2/3} + 3\Gamma_i}}$

IPD in shock commpressed Al

predictions by different approaches

disappearance of spectral lines

17

IPD for aluminum

S. M. Vinko *et al.*, Nature **482** (2012); Lin et al., PRE 96 (2017)

12.10.2019 Heid Reinholz: Dielectric function and optical properties in warm dense plasma

IPD vs. Inglis-Teller effect

12.10.2019 Heid Reinholz: Dielectric function and optical properties in warm dense plasma

Consistent treatment of two-particle problem:

$$\frac{p^2}{2m_e}\psi_n(p) + \sum_q V(q)\psi_n(p+q) - E_n\psi_n(p) = \sum_q V(q)\left[\psi_n(p+q)f_e(p) - \psi_n(p)f_e(p+q)\right]$$

Pauli blocking, Fock self-energy shift, Fermi function f_e

- $V(q) \rightarrow$ dynamically screened Coulomb potential (dielectric function)
 - → dynamical screening leads to dynamical self-energy shift (DH in low density limit)

Röpke, DB, Lin, Kraeft, HR, Redmer, HR, PRE 99 (2019)

Carbon ionization @ 100 eV

Röpke, DB, Lin, Kraeft, HR, Redmer, HR, PRE 99 (2019)

summary and outlook

- A quantum statistical approach is worked out for WDM at arbitrary degeneracy with well defined concepts: spectral function, density of states, frequency dependent absorption coefficient, collision frequency, screening
- IPD low-density (Debye-Hueckel) approximations are improved. EK and SP approximations are improved including dynamical screening and pair distribution functions.
- At high densities, the electrons become degenerate, and exchange effects must be taken into account. In particular, bound states are destroyed as a result of Pauli blocking.
- Future work
 - > Optical properties (continuum edge, Inglis-Teller-effect)
 - Comparison with DFT–MD calculations and other approaches
 - > Input for codes

Collaboraters

Rostock:	C. Lin, S. Rosmej, A. Sengebusch, G. Röpke, R. Redmer group
Breslau:	D. Blaschke, NU. Bastian
Hamburg <u>:</u>	C. Fortmann, R. Thiele, U. Zastrau
Rehovot:	Y. Maron, E. Krupp, E. Stambulchik
Moscow:	I.V. Morozov, R.G. Bystryi, M. Veysman
<u>Chernogolovka:</u>	V. Gryaznov, V. Karakhtanov, V. Mintsev, Yu. Zaparoghets
Toulouse:	E. Suraud
SLAC, Standford:	S. H. Glenzer, T. Döppner
Almaty:	K. Dzhumagulova, Y. Omarbakiyeva, T. Ramazanov, E. Shalenov

J. Adams (Colorado Springs), N. Bedida (Ourgla/Algeria), I. Broda (Linz), Y. Chen,

- S. Lorenzen (Bonn), B. Omar (Umeo), T. Raitza, P.-G. Reinhard (Erlangen), P. Sperling
- A. Wierling (Sogndal), M. Winkel

Collaborative Research Center (DFG) DFG-РФФИ

