QCD transition line from the lattice

+ comparison to the HRG model

Claudia Ratti

University of Houston

How can lattice QCD support the experiments?

- Equation of state
 - Needed for hydrodynamic description of the QGP
- QCD phase diagram
 - Transition line at finite density
 - Constraints on the location of the critical point
- Fluctuations of conserved charges
 - Can be simulated on the lattice and measured in experiments
 - Can give information on the evolution of heavy-ion collisions
 - Can give information on the critical point

QCD transition line

$$\frac{T_c(\mu_B)}{T_c(\mu_B = 0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4$$

Collaborators: Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Ruben Kara, Sandor Katz, Paolo Parotto, Attila Pasztor, Kalman Szabo

Claudia Ratti

3/22

State of the art

- From direct simulations at μ_B=0:
 - \bigcirc T_c(µ_B=0)=(156.5±1.5) MeV
 - K₂=0.012±0.004
 - \bigcirc K₄=0.000±0.004

Observables

• We consider the following observables:

$$\begin{split} \langle \bar{\psi}\psi \rangle &= -\left[\langle \bar{\psi}\psi \rangle_T - \langle \bar{\psi}\psi \rangle_0\right] \frac{m_{\rm ud}}{f_\pi^4} \,, \\ \chi &= \left[\chi_T - \chi_0\right] \frac{m_{\rm ud}^2}{f_\pi^4} \,, \quad \text{with} \\ \bar{\psi}\psi \rangle_{T,0} &= \frac{T}{V} \frac{\partial \log Z}{\partial m_{\rm ud}} \quad \chi_{T,0} = \frac{T}{V} \frac{\partial^2 \log Z}{\partial m_{\rm ud}^2} \end{split}$$

- The peak height of the susceptibility indicates the strength of the transition
- The peak position in temperature serves as a definition for the chiral crossover temperature

Observables

• Plan:

- \bigcirc Calculate these two observables at finite imaginary μ_B and finite temperature T
- $\, \odot \,$ Use the shift of these observables as a function of imaginary μ_B to determine $T_c,\,K_2$ and K_4

Observables

- Observation
 - When we plot the chiral susceptibility as a function of the chiral condensate, we observe a very weak chemical potential dependence

S. Borsanyi, C. R. et al., PRL (2020)

Procedure

- Find the peak in the curve $\chi(\langle \bar{\psi}\psi \rangle)$ through a low-order polynomial fit for each N_t and imaginary μ_B . This yields $\langle \bar{\psi}\psi \rangle_c$
- Use an interpolation of $\langle \bar{\psi}\psi \rangle$ (T) to convert $\langle \bar{\psi}\psi \rangle_c$ to T_c for each N_t and imaginary μ_B .
- Perform a fit of $T_c(N_t, Im\mu_B/T_c)$ to determine the coefficients K_2 and K_4
- This leads to 2⁸=256 independent analyses

Results

$$T_c(LT = 4, \mu_B = 0) = 158.0 \pm 0.6 \text{ MeV}$$

 $\kappa_2 = 0.0153 \pm 0.0018 ,$
 $\kappa_4 = 0.00032 \pm 0.00067$

Results

Width of the transition

• Natural definition: second derivative of the susceptibility at T_c

$$(\Delta T)^2 = -\chi(T_c) \left[\frac{d^2}{dT^2}\chi\right]_{T=T_c}^{-1}$$

 This turns out to be noisy, so we replace it by σ, a proxy for ΔT defined as:

$$\langle \psi \psi \rangle (T_c \pm \sigma/2) = \langle \psi \psi \rangle_c \pm \Delta \langle \psi \psi \rangle/2$$

with $\langle \bar{\psi} \psi \rangle_c = 0.285$ and $\Delta \langle \bar{\psi} \psi \rangle = 0.14$

- The exact range is chosen such that σ coincides with ΔT at zero and imaginary $\mu_B.$

Width of the transition

S. Borsanyi, C. R. et al., PRL (2020)

比

Strength of the transition

 Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength of the crossover

Comparison to the HRG model: off-diagonal correlators

Collaborators: Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Jacquelyn Noronha-Hostler, Paolo Parotto, Attila Pasztor, Claudia Ratti, Jamie M. Stafford

14/22

Off-diagonal fluctuations of conserved charges

- The measurable species in HIC are only a handful. How much do they tell us about the correlation between conserved charges?
- Historically, the proxies for B, Q and S have been p, p,π,K and K themselves → what about off-diagonal correlators?

- We want to find:
 - The main contributions to off-diagonal correlators
 - A way to compare lattice to experiment

Off-diagonal correlators: HRG model

Simple formulation, ideal gas of all hadronic resonances¹. The pressure reads: $\frac{P(T,\mu_B,\mu_Q,\mu_S)}{T^4} = \sum_R \frac{(-1)^{B_R+1} d_R}{2\pi^2 T^3} \int_0^\infty dp \, p^2 \log \left[1 + (-1)^{B_R+1} \exp\left(-\sqrt{p^2 + m_R^2}/T + \mu_R/T\right)\right]$ with:

$$\mu_R = \mu_B B_R + \mu_Q Q_R + \mu_S S_R$$

Susceptibilities in the HRG simply read:

$$\chi_{ijk}^{BQS}(T,\mu_B,\mu_Q,\mu_S) = \sum_R B_R^i Q_R^j S_R^k I_{i+j+k}^R(T,\mu_B,\mu_Q,\mu_S)$$

where:

$$I_{i+j+k}^{R}(T,\mu_{B},\mu_{Q},\mu_{S}) = \frac{\partial^{i+j+k}P_{R}/T^{4}}{\partial(\mu_{R}/T)^{i+j+k}}$$

¹we use the list PDG2016+ from **P. Alba, PP** *et al.*, **Phys.Rev.D 96 034517 (2017)**

Off-diagonal correlators: HRG model

♦ The species that are stable under strong interactions, AND are **measurable**

$$\pi^{\pm}, \ K^{\pm}, \ p\left(\overline{p}\right), \ \Lambda(\overline{\Lambda}), \ \Xi^{-}(\overline{\Xi}^{+}), \ \Omega^{-}(\overline{\Omega}^{+})$$

 \longrightarrow we inevitably lose a good chunk of conserved charges!

• Thanks to the separation between observable and non-observables species, one can pinpoint what can be measured and what cannot of χ_{ijk}^{BQS}

• For the **proton- and kaon-dominated** χ_{BQ} and χ_{QS} , a large part of the full correlator is carried by measurable particles

• χ_{BS} is less transparent, and requires careful analysis of its contributions

See also PBM et al., PLB (2015)

Measurable contribution breakdown

- Each 2-particle correlation can be isolated in the HRG model
- In light of studying the ratio χ_{11}^{BS}/χ_2^S , we consider χ_{11}^{BS} and χ_2^S

• Different-particle correlations are negligible throughout, while the contribution from multi-strange baryons is sizable

Hadronic proxies

Constructing a proxy not a trivial task: consider main contributions to numerator and denominator R. Bellwied, C. R. et al., PRD (2020)

• Good proxy for χ_{11}^{BS}/χ_2^S :

 $\widetilde{C}^{\Lambda,\Lambda K}_{BS,SS} = \sigma_{\Lambda}^2/(\sigma_K^2 + \sigma_{\Lambda}^2)$

Hadronic proxies: finite μ_{B} and kinematic cuts

- Consider our proxy along parametrized freeze-out lines with different $T(\mu_B = 0)$
- We look the ratio χ_{11}^{BS}/χ_2^S , in the case:
 - With no acceptance cuts
 - With "mock" cuts: $0.2 \le p_T \le 2.0 \,\text{GeV}, |y| \le 1.0$ R. Bellwied, C. R. et al., PRD (2020)

• The proxy works well at finite μ_B , and the effect of cuts is minimal! Note: when taking these ratios, the same cuts were applied to all species involved

Hadronic proxies: a comparison to experiment

• Compare to STAR data with the same cuts as in the experiment:

$\Lambda: \qquad 0.9 < p_T < 2.0 {\rm GeV}$	y < 0.5
--	----------

- K: $0.4 < p_T < 1.6 \,\text{GeV}$ |y| < 0.5
- A comparison along the same freeze-out lines as before shows a preferred $T(\mu_B = 0) \sim 165 \,\text{MeV}$
- Note: a factor ~ 3 separates the case with same and different cuts! (see previous slide)

R. Bellwied, C. R. et al., PRD (2020)

Crucial to have same cuts if comparing with lattice results

Conclusions

- We obtained the most accurate results for the QCD transition line so far
- The curvature at μ_B =0 is very small. Its NLO correction is compatible with zero
- The width of the phase transition remains constant up to $\mu_B \sim 300 \text{ MeV}$
- The strength of the phase transition remains constant up to $\mu_B \sim 300 \text{ MeV}$
- We see no sign of criticality in the explored range
- We found good proxies for off-diagonal correlators
- Their dependence on kinematic cuts is mild

Backup slides

Width of the transition

• Natural definition: second derivative of the susceptibility at T_c

$$(\Delta T)^2 = -\chi(T_c) \left[\frac{d^2}{dT^2}\chi\right]_{T=T_c}^{-1}$$

 This turns out to be noisy, so we replace it by σ, a proxy for ΔT defined as:

$$\langle \psi \psi \rangle (T_c \pm \sigma/2) = \langle \psi \psi \rangle_c \pm \Delta \langle \psi \psi \rangle/2$$

with $\langle \bar{\psi} \psi \rangle_c = 0.285$ and $\Delta \langle \bar{\psi} \psi \rangle = 0.14$

- The exact range is chosen such that σ coincides with ΔT at zero and imaginary $\mu_B.$

Width of the transition

S. Borsanyi et al., 2002.02821

Strength of the transition

 Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength of the crossover

Pressure coefficients: simulations at imaginary μ_B

Pressure coefficients: simulations at imaginary μ_B

Common technique: [de Forcrand, Philipsen (2002)], [D'Elia and Lombardo, (2002)], [Bonati et al., (2015), (2018)], [Cea et al., (2015)]

Simulations at imaginary μ_B :

Strategy: simulate lower-order fluctuations and use them in a combined, correlated fit

$$\begin{split} \chi_1^B(\hat{\mu}_B) &= 2c_2\hat{\mu}_B + 4c_4\hat{\mu}_B^3 + 6c_6\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_1\hat{\mu}_B^7 + \frac{4!}{9!}c_4\epsilon_2\hat{\mu}_B^9 \\ \chi_2^B(\hat{\mu}_B) &= 2c_2 + 12c_4\hat{\mu}_B^2 + 30c_6\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_1\hat{\mu}_B^6 + \frac{4!}{8!}c_4\epsilon_2\hat{\mu}_B^8 \\ \chi_3^B(\hat{\mu}_B) &= 24c_4\hat{\mu}_B + 120c_6\hat{\mu}_B^3 + \frac{4!}{5!}c_4\epsilon_1\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_2\hat{\mu}_B^7 \\ \chi_4^B(\hat{\mu}_B) &= 24c_4 + 360c_6\hat{\mu}_B^2 + c_4\epsilon_1\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_2\hat{\mu}_B^6. \end{split}$$
 See also M. D'Elia et al., PRD (2017)

13/33

Merging with HRG model at low T

 \Rightarrow Smooth merging with Hadron Resonance Gas (HRG) model through:

$$\frac{P_{\text{Final}}(T,\mu_B)}{T^4} = \frac{P(T,\mu_B)}{T^4} \frac{1}{2} \left[1 + \tanh\left(\frac{T-T'(\mu_B)}{\Delta T}\right) \right] + \frac{P_{\text{HRG}}(T,\mu_B)}{T^4} \frac{1}{2} \left[1 - \tanh\left(\frac{T-T'(\mu_B)}{\Delta T}\right) \right]$$
where:

► $T'(\mu_B)$ is the "transition" temperature, depending on μ_B :

$$T'(\mu_B) = T_0 + \frac{\kappa}{T_0}\mu_B^2 - T^*$$

- ΔT is a measure of the overlap region size
 - \Rightarrow In the following: $T^* = 23 \,\mathrm{MeV}$, $\Delta T = 17 \,\mathrm{MeV}$