Chiral phase transition of (2+1)-flavor QCD

Anirban Lahiri (Bielefeld University) for HotQCD collaboration

BMBF project ALICE Germany

- Scaling analysis : basic definitions and some insights
- 3 Something better from scaling function?
- 4 Results towards chiral limit
- 5 Summary and Outlook

Overview

Introduction

2 Scaling analysis : basic definitions and some insights

3 Something better from scaling function?

4) Results towards chiral limit

- In QCD, transition for physical quark masses and vanishing or small baryon density is a crossover.
- T_{pc} for physical mass QCD has been determined with very good accuracy from various observables : $T_{pc}(\mu_B = 0) = 156.5 \pm 1.5$ MeV [HotQCD; PLB 795 15 (2019)].
- Important question : How do singular terms of the chiral phase transition at vanishing quark mass affect observables at physical values of the quark mass? ⇒ How far the physical regime is from chiral limit w.r.t. scaling window?
- Key question : What is the chiral transition temperature, T_c^0 ?

- Key question : What is the chiral transition temperature, T_c^0 ?
- Possibly another question : What is the nature of the thermal phase transition in the chiral limit?
- Two possible scenarios : [O. Philipsen and C. Pinke. Phys. Rev. D93, 114507, 2016.]

- Key question : What is the chiral transition temperature, T_c^0 ?
- Possibly another question : What is the nature of the thermal phase transition in the chiral limit?
- Two possible scenarios : [O. Philipsen and C. Pinke. Phys. Rev. D93, 114507, 2016.]

• $N_f = 3$: No direct evidence of 1st order transition down to $m_{\pi} = 80$ MeV. Scaling argument pushes it further to $m_{\pi} = 50$ MeV. A. Bazavov *et. al.* Phys. Rev. D95, 074505 (2017).

- Key question : What is the chiral transition temperature, T_c^0 ?
- Possibly another question : What is the nature of the thermal phase transition in the chiral limit?
- Two possible scenarios : [O. Philipsen and C. Pinke. Phys. Rev. D93, 114507, 2016.]

• $N_f = 3$: No direct evidence of 1st order transition down to $m_{\pi} = 80$ MeV. Scaling argument pushes it further to $m_{\pi} = 50$ MeV. A. Bazavov *et. al.* Phys. Rev. D95, 074505 (2017).

Scaling analysis : basic definitions and some insights

3 Something better from scaling function?

4 Results towards chiral limit

Basic quantities

In terms of temperature T and symmetry breaking field $H = m_l/m_s$ the scaling variables are defined as :

$$t = \frac{1}{t_0} \frac{T - T_c^0}{T_c^0}$$
 and $h = \frac{1}{h_0} \frac{m_l}{m_s} = \frac{1}{h_0} H$

Scaling variable :

$$z = \frac{t}{h^{\frac{1}{\beta\delta}}} = z_0 \left(\frac{T - T_c^0}{T_c^0}\right) \left(\frac{1}{H^{1/\beta\delta}}\right); \quad z_0 = \frac{h_0^{\frac{1}{\beta\delta}}}{t_0}$$

Chiral condensat

Chiral susceptibilit

te :
$$\langle \bar{\psi}\psi \rangle_f = \frac{T}{V} \frac{\partial \ln Z}{\partial m_f}$$

ty : $\chi_m^{fg} = \frac{\partial}{\partial m_g} \langle \bar{\psi}\psi \rangle_f$

_

н.

Scaling relations

Renormalization group invariant (RGI) definition of order parameter :

$$M = \frac{m_s}{f_K^4} \left(\left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) - \frac{m_u + m_d}{m_s} \langle \bar{\psi}\psi \rangle_s \right) \equiv \frac{\Sigma_{\rm sub}}{f_K^4}$$

RGI definition of order parameter susceptibility :

$$\chi_M = \frac{T}{V} m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) M$$

Close to chiral limit, singular part behaves as :

$$M = h^{1/\delta} f_G(z)$$

$$\chi_M = \frac{1}{h_0} h^{1/\delta - 1} f_{\chi}(z)$$

 $f_G(z)$ and $f_\chi(z)$ are universal scaling functions which have been precisely determined from various spin models.

Different estimators for pseudo-critical temperature

• For finite chemical potential :
$$t = \frac{1}{t_0} \left(\frac{T - T_c^0}{T_c^0} + \kappa_B \left(\frac{\mu_B}{T} \right)^2 \right)$$

- In scaling regime : $\frac{\partial}{\partial T} \sim \frac{\partial^2}{\partial \mu_B^2}$
- \bullet Different estimators for $T_{\rm pc}$:
 - **1** Peak of chiral susceptibility : χ_M .
 - ② Inflection point of chiral condensate : $\frac{\partial}{\partial T}M$.
 - $Minimum of \frac{\partial^2}{\partial \mu_B^2} M.$
- At finite mass, different estimators of pseudo-critical temperature, in principle will give different results.
- In chiral limit, all pseudo-critical temperatures should merge to the chiral critical temperature, T_c^0 .

Anirban Lahiri (Bielefeld University) for HotQCD

2 Scaling analysis : basic definitions and some insights

3 Something better from scaling function?

- 4 Results towards chiral limit
- 5 Summary and Outlook

Mass scaling of conventional estimators

Mass scaling of different estimators of T_{pc} :

 $f_G(z)$ and $f_{\chi}(z)$ are universal scaling functions which have been precisely determined from various spin models.

Scaling functions : Some intriguing facts

$$T_X(H) = T_c^0 \left(1 + \frac{z_X}{z_0} H^{1/\beta\delta} \right)$$

Our approach : Use z_X at or close to 0. We choose to work with $X = \delta$ and 60 :

$$\frac{H\chi_M(T_{\delta}, H)}{M(T_{\delta}, H)} = \frac{1}{\delta}$$

$$\chi_M(T_{60}, H) = 0.6\chi_M^{max}$$

Dependence on quark mass (H) reduced by two orders of magnitude $\frac{1}{2}$

	z_p	$z_{60\%}^{-}$
O(2)	1.56	-0.005
O(4)	1.37	-0.013
Z(2)	2.00	0.10

Scaling functions : Some intriguing facts

• Behavior of $H\chi_M/M$ is like Binder cumulant at critical point. [F. Karsch and E. Laermann.

Phys. Rev. D50, 6954, 1994.]

- Ratio is expected to have a constant value at the crossing point, z = 0, *i.e.* in chiral limit at T_c^0 .
- Determine temperature $T_{\delta}(H)$ which satisfies :

$$\frac{H\chi_M(T_{\delta}, H)}{M(T_{\delta}, H)} = \frac{1}{\delta} \Rightarrow T_c^0 = \lim_{H \to 0} T_{\delta}(H)$$

• Uniqueness of the crossing point gets spoiled in presence of regular terms.

.

Improved estimators : basic philosophy

$$T_X(H) = T_c^0 \left(1 + \frac{z_X}{z_0} H^{1/\beta\delta} \right)$$

- Our approach : Use z_X at or close to 0.
- We choose to work with $X = \delta$ and 60.

Because of the the reduced variation w.r.t. H, up to the regular contributions, the pseudo-critical temperatures defined by the improved estimators at any finite value of H, *e.g.* H_{phys} , already gives a close estimate of T_c^0 .

Improved estimators on finite volumes

- System size (L) is also a scaling field resulting into additional scaling variable $z_L \propto 1/(LH^{\nu_c}).$
- We have used O(4) finite size scaling function for our calculations.

[J. Engels and F. Karsch. Phys. Rev. D90, 014501, 2014.]

$$T_X(H,L) = T_c^0 \left(1 + \frac{z_X(z_L)}{z_0} H^{1/\beta\delta} \right)$$

Improved estimators on finite volumes

- System size (L) is also a scaling field resulting into additional scaling variable $z_L \propto 1/(LH^{\nu_c}).$
- We have used O(4) finite size scaling function for our calculations.

[J. Engels and F. Karsch. Phys. Rev. D90, 014501, 2014.]

• Both the estimators seems to approach thermodynamic limit faster than 1/V. Determine temperature $T_{\delta}(H,L)$ which satisfies :

$$\frac{H\chi_M\left(T_{\delta}, H, L\right)}{M\left(T_{\delta}, H, L\right)} = \frac{1}{\delta} \Rightarrow T_c^0 = \lim_{H \to 0} \lim_{L \to \infty} T_{\delta}\left(H, L\right).$$

$$T_X(H,L) = T_c^0 \left(1 + \frac{z_X(z_L)}{z_0} H^{1/\beta\delta} \right)$$

Improved estimators on finite volumes

- System size (L) is also a scaling field resulting into additional scaling variable $z_L \propto 1/(LH^{\nu_c}).$
- We have used O(4) finite size scaling function for our calculations.

[J. Engels and F. Karsch. Phys. Rev. D90, 014501, 2014.]

• Both the estimators seems to approach thermodynamic limit faster than 1/V. Determine temperature $T_{\delta}(H, L)$ which satisfies :

$$\frac{H\chi_M\left(T_{\delta}, H, L\right)}{M\left(T_{\delta}, H, L\right)} = \frac{1}{\delta} \Rightarrow T_c^0 = \lim_{H \to 0} \lim_{a \to 0} \lim_{L \to \infty} T_{\delta}\left(H, L\right).$$

$$T_X(H,L) = T_c^0 \left(1 + \frac{z_X(z_L)}{z_0} H^{1/\beta\delta} \right)$$

Overview

Introduction

2 Scaling analysis : basic definitions and some insights

3 Something better from scaling function?

4 Results towards chiral limit

No evidence for $1^{\rm st}$ order transition

- Volume dependence of χ_M is studied for H = 1/80 which corresponds to $m_{\pi} = 80$ MeV.
- $\chi_M^{\rm max}$ is NOT proportional to volume.
- $\chi_M^{\rm max}$ seems to saturate towards thermodynamic limit.
- $T_{\rm pc}$ and T_{60} increase towards thermodynamic limit.

- Possibility for 1^{st} order phase transition can be ruled out at $m_{\pi} = 80$ MeV for $N_{\tau} = 8$.
- Similar results are also obtained for $N_{\tau} = 6$ and 12.

Chiral susceptibility

- The increase of $\chi_M^{\rm max}$ is apparently consistent with $H^{1/\delta-1}$ with $\delta \approx 4.8$.
- Precise determination of δ is not possible with the present data.
- Preliminary analyses with H_c being a free parameter gives a quite uncertain estimate of H_c with 0 within the range.

- Saturating trend of T_{60} towards chiral limit even at $N_{\tau} = 8$ already puts this as an improved estimator.
- There is no strong evidence for H_c being non-zero.

T_c^0 in continuum : 'Proper' limits

- Results for fixed H have been extrapolated to thermodynamic limit.
- Systematic uncertainty comes in form of difference between O(4) and 1/Vextrapolations.
- Continuum extrapolation are performed with(out) $N_{\tau} = 6$ results which is another source of systematic uncertainty.

$T_c^0 \ {\rm in} \ {\rm continuum}$: 'Improper' limits

• Continuum extrapolation are performed with(out) $N_{\tau} = 6$ results which is another source of systematic uncertainty. • Results for fixed N_{τ} have been extrapolated to thermodynamic limit and chiral limit simultaneously using O(4)scaling functions.

T_c^0 : A single number

Final number we have quoted : $T_c^0 = 132_{-6}^{+3}$ MeV. HotQCD; PRL 123, 062002 (2019).

Preliminary comparison with conventional estimator

- Disclaimer : All $T_{\rm pc}$ numbers and T_{δ} for H=1/27 are not infinite volume extrapolated.
- A little tension can be seen for $T_{\rm pc}$ calculation for H=1/40.
- Still compares well.
- In thermodynamic limit, as we have seen earlier, $T_{\rm pc}$ will presumably increase which may pull down T_c^0 , more closer to the current estimate.

Order of chiral transition : work in progress....

$$\frac{M}{\chi_M} = H \frac{f_G(z)}{f_\chi(z)}$$

- For small H the data seems to be linear.
- Lines are NOT fitted curves rather expectations for O(2) and O(4).
- Regular term $\propto H^{2-1/\delta}$.
- Coefficient of the regular term is NOT fitted, rather taken from MEoS fits.

- Z(2) transition, at some finite H_c , will results into a sudden drop in the ratio $\Rightarrow 1^{st}$ order transition is unlikely for $m_{\pi} > 55$ MeV.
- Additional low *H* measurements : slope can be directly determined as a fit parameter.

Order of chiral transition : work in progress....

- Z(2) lines are schematic : $\frac{M}{\chi_M} = (H H_c) \frac{f_G(z)}{f_{\chi}(z)}$
- If M is not exactly order parameter then the Z(2) lines will have a curvature.
- Mixing becomes weak as H_c becomes small.
- Data seems to favor O(N) compared to Z(2).

Overview

Introduction

2 Scaling analysis : basic definitions and some insights

3 Something better from scaling function?

4 Results towards chiral limit

- Summary :
 - **①** Scaling fits with O(4) exponents worked reasonably.
 - Within error same results obtained taking chiral and continuum extrapolations in different order.
 - **③** Current estimate of T_c^0 , in continuum, is 132_{-6}^{+3} MeV.
- Outlook :
 - Comparison with conventional estimators will be done with finite volume effects taken into account.
 - 2 Additional low H measurements will help us to be confident about the scaling behavior.
 - Solution Precise calculation of disconnected part of chiral susceptibilities at high temperatures can throw some light into $U_A(1)$ restoration in chiral limit.

- Summary :
 - **①** Scaling fits with O(4) exponents worked reasonably.
 - Within error same results obtained taking chiral and continuum extrapolations in different order.
 - **③** Current estimate of T_c^0 , in continuum, is 132_{-6}^{+3} MeV.
- Outlook :
 - Comparison with conventional estimators will be done with finite volume effects taken into account.
 - 2 Additional low H measurements will help us to be confident about the scaling behavior.
 - Solution Precise calculation of disconnected part of chiral susceptibilities at high temperatures can throw some light into $U_A(1)$ restoration in chiral limit.

Symmetry transformations

