

Screening masses towards chiral limit

Simon Dentinger

In cooperation with F. Karsch, O. Kaczmarek, A. Lahiri

July 30th, 2020

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
- 5 Periodic temporal boundary condition
- 6 Summary & Outlook

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
 - 5 Periodic temporal boundary condition
- 6 Summary & Outlook

Scaling behavior of observables around critial point depends on universality class of critical point

Owe Philipsen, Christopher Pinke, Phys. Rev. D 93 114507 (2016)

Scaling behavior of observables around critial point depends on universality class of critical point

Owe Philipsen, Christopher Pinke, Phys. Rev. D 93 114507 (2016)

Criticality in QCD and the HRG

$U_{\!A}(1)$ distinguishes between ${\cal O}(4)$ and different universality classes

chiral limit

 $U_A(1)$ broken

O(4)

$U_{\!A}(1)$ distinguishes between ${\cal O}(4)$ and different universality classes

chiral limit

- **2** $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
 - 5 Periodic temporal boundary condition
- 6 Summary & Outlook

$U_A(1)$ and screening masses

 S_{QCD} is invariant under $U_A(1)$ for $m_{u,d} = m_l = 0$, but

$$C = \langle X \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}] \mathcal{D}[U] \exp(-S_{\mathsf{QCD}}[U, \psi, \bar{\psi}]) X[U, \psi, \bar{\psi}]$$

$$\mathcal{D}[\psi,\bar{\psi}] = \mathcal{D}[\psi',\bar{\psi}'](1-2i\varepsilon N_f Q_{\mathsf{top}} + \mathcal{O}(\varepsilon^2))$$

ightarrow invariance depends on invariance of measure ightarrow anomaly of $U_A(1)$

Gattringer, Lang: Quantum Chromodynamics on the Lattice

 S_{QCD} is invariant under $U_A(1)$ for $m_{u,d} = m_l = 0$, but

$$C = \langle X \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}] \mathcal{D}[U] \exp(-S_{\mathsf{QCD}}[U, \psi, \bar{\psi}]) X[U, \psi, \bar{\psi}]$$

$$\mathcal{D}[\psi,\bar{\psi}] = \mathcal{D}[\psi',\bar{\psi}'](1-2i\varepsilon N_f Q_{\mathsf{top}} + \mathcal{O}(\varepsilon^2))$$

ightarrow invariance depends on invariance of measure ightarrow anomaly of $U_A(1)$

e.g. $O_{\pi^+}(n_{\tau/s}) = \bar{d}(n_{\tau/s})\gamma_5 u(n_{\tau/s}) \rightarrow$ $C_{\pi}(n) = \langle O_{\pi}(n)O_{\pi}^{\dagger}(0) \rangle = \sum_k \langle 0| O_{\pi}(0) |k \rangle \langle k| O_{\pi}^{\dagger}(0) |0 \rangle \exp(-naE_k)$

If $U_A(1)$ is effectively restored

- C_{a_0} and C_{π} degenerate
- $\rightarrow\,$ corresponding masses also degenerate

Hauke Sandmeyer PhD thesis

Simon Dentinger

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
- 5 Periodic temporal boundary condition
- 6 Summary & Outlook

Screening masses for physical masses

 $U_A(1)$ effectively restored $\rightarrow m_{\text{scalar}} = m_{\text{pseudo-scalar}}$

▶ T = 0: $m_{\text{screen.}} = m_{\text{pole}}$ ▶ physical mass $m_l/m_s = 1/27$

A. Bazavov, S. Dentinger et. al., Phys. Rev. D $100,\ 094510$ (2019)

Simon Dentinger

Criticality in QCD and the HRG

Screening masses 5 / 17

Screening masses for physical masses

 $U_A(1)$ effectively restored $\rightarrow m_{scalar} = m_{pseudo-scalar}$

A. Bazavov, S. Dentinger et. al., Phys. Rev. D 100, 094510 (2019)

Simon Dentinger

Criticality in QCD and the HRG

Screening masses 5 / 17

Screening masses for physical masses

 $U_A(1)$ effectively restored $\rightarrow m_{scalar} = m_{pseudo-scalar}$

▶ T = 0: m_{screen.} = m_{pole}
 ▶ physical mass m_l/m_s = 1/27

- \blacktriangleright AV-V degenerate at $T_{\rm pc}$
- ▶ S-PS degenerate at $\approx 1.3 T_{\rm pc} \rightarrow U_A(1)$ effectively restored

A. Bazavov, S. Dentinger et. al., Phys. Rev. D 100, 094510 (2019)

Simon Dentinger

Criticality in QCD and the HRG

Screening masses

5 / 17

Why? Susceptibilities independent of multiple state fits

A. Bazavov, S. Dentinger et. al., Phys. Rev. D 100, 094510 (2019)

Criticality in QCD and the HRG

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
 - 5 Periodic temporal boundary condition
 - 6 Summary & Outlook

- first thermodynamic limit $N_s o \infty$
- then continuum limit $N_{ au} o \infty$
- finally chiral limit $m_l \to 0$

Thermodynamic limit for screening masses is

$$m_{N_s/N_\tau} = m_{N_s \to \infty/N_\tau} \left(1 + b_{N_\tau} \left(\frac{N_\tau}{N_s} \right)^c \right),$$

where c = 3 for T = 0, c = 1 for $T \to \infty$. Therefore $c \in [1, 3]$ for any T.

M.Fukugita, H.Mino et al., Phys. Lett. B294, 380 (1992)

Simon Dentinger

Criticality in QCD and the HRG

Thermodynamic limit for screening masses is

$$m_{N_s/N_\tau} = m_{N_s \to \infty/N_\tau} \left(1 + b_{N_\tau} \left(\frac{N_\tau}{N_s} \right)^c \right),$$

where c = 3 for T = 0, c = 1 for $T \to \infty$. Therefore $c \in [1, 3]$ for any T.

Assumptions:

- ▶ $m_{N_s \to \infty/N_\tau}$ and b_{N_τ} depends on N_τ , particle type (e.g. pion) and T
- \blacktriangleright c only depends on T
- \Rightarrow combined fit for pseudoscalar and scalar particle for different N_τ possible with shared parameter c

M.Fukugita, H.Mino et al., Phys. Lett. B294, 380 (1992)

Thermodynamic limit of screening masses

 $T = 148 \text{ MeV} m_*/m_l = 80$

 \blacktriangleright $N_s \rightarrow \infty$ at fixed N_τ

- \blacktriangleright combined fit with shared c for $N_{\tau} = 6, 8, 12$ for the scalar and pseudoscalar mass
- fits dominated by small uncertainty for the pseudoscalar particle

Simon Dentinger

- ▶ $N_s \rightarrow \infty$ extrapolated masses ▶ only for two *T* for all N_τ values
- continuum limit possible
- ▶ $1/N_{\tau}^2$ dependence expected

Screening masses in chiral limit

$U_A(1)$ effectively restored $\rightarrow m_{scalar} = m_{pseudo-scalar}$

masses degenerate at high T

• degenerate at $T_c = 132^{+3}_{-6}$ MeV?

H.-T. Ding, P. Hegde et. al., Phys. Rev. Lett. 123, 062002 (2019)

Simon Dentinger

Criticality in QCD and the HRG

Thermodynamic limit of susceptibilities

 χ_{π} related to dimensionless order parameter of chiral condensate M. Thermodynamic limit can be obtained using finite size scaling function (compare to talk of A. Lahiri).

Regular correction for χ_{δ} expected

$$\chi_{\delta}(N_s) = \chi_{\delta}(\infty) + g(N_{\tau})\frac{1}{V} = \chi_{\delta}(\infty) + d(N_{\tau})\frac{1}{N_s^3}.$$

H.-T. Ding, P. Hegde et. al., Phys. Rev. Lett. 123, 062002 (2019)

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
- 5 Periodic temporal boundary condition
 - 6 Summary & Outlook

In infinite temperature limit states go towards $E=\sqrt{\Omega^2+m_{tot}^2}$, with lowest Matsubara frequency Ω

- fermions have $\Omega = \pi T$
- $\rightarrow\,$ for two fermions $E\approx 2\pi T$
- bosons have $\Omega = 0$
- $\rightarrow E = m_{tot}$

G. Boyd, Sourendu Gupta et al., Z. Phys. C 64, 331-338 (1994)

In infinite temperature limit states go towards $E=\sqrt{\Omega^2+m_{tot}^2}$, with lowest Matsubara frequency Ω

- fermions have $\Omega = \pi T$
- $\rightarrow\,$ for two fermions $E\approx 2\pi T$
 - bosons have $\Omega = 0$

 $\rightarrow E = m_{tot}$

Switching the boundary conditions in the temporal direction from anti-periodic to periodic we change the nature of valence quarks from fermionic to bosonic states

- mesons are always bosons
- $\rightarrow\,$ screening mass at low T unchanged
- \blacktriangleright around and above $T_{\rm pc}$ meson splits into quark states
- $\rightarrow\,$ split in screening masses for anti-periodic and periodic temporal boundary conditions
 - G. Boyd, Sourendu Gupta et al., Z. Phys. C 64, 331-338 (1994)

F. Karsch et al., Phys. Rev. D 85, 114501 (2012)

Simon Dentinger

Criticality in QCD and the HRG

 $\blacktriangleright m_{\pi} = 80 \text{ MeV}$

- periodic temporal BC: Bosons
- anti-periodic temporal BC: Fermions
- \blacktriangleright split before $T_{
 m pc}$

- 2 $U_A(1)$ and screening masses
- 3 Previous results: physical quark mass (2+1)-Flavor
- 4 Lower than physical quark masses (2+1)-Flavor
 - 5 Periodic temporal boundary condition
- 6 Summary & Outlook

Summary & Outlook

Summary

- scaling behavior of observables around critial point depends on universality class of critical point
- ▶ $U_A(1)$ distinguishes between O(4) and other universality classes
- $U_A(1)$ symmetry can be checked via screening meson correlators
- splitting of screening masses for periodic and anti-periodic temporal boundary condition around and above T_{pc}

Outlook

- limits have to be taken \rightarrow continuum limit, chiral limit
- limits for susceptibilities
- \blacktriangleright splitting T periodic and anti-periodic temporal boundary condition
- compare with other methods ightarrow chiral condensate, topology

Simon Dentinger

Criticality in QCD and the HRG

17 / 17

Appendix