Fluctuation and conservation

- Fluctuations and the QCD phase diagram
 - bi-modal distributions
- Baryon number conservation 2.0: Correcting susceptibilities from lattice QCD for global B, Q, S conservation

A. Bzdak, D. Oliinychenko, J. Steinheimer, VK: arXiv:1804.04463 A. Bzdak, VK: arXiv:1811.04456

V. Vovchenko, O. Savchuk, R. Poberezhnyuk, M. Gorenstein, V.K., arXiv 2003.13905,

The phase diagram

Cumulants of (baryon) number distribution

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive): $K_n \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios:

$$\frac{K_2}{\langle N \rangle}, \quad \frac{K_3}{K_2}, \quad \frac{K_4}{K_2}$$

Cumulants have been measured

Alternative approach:

Look at integrated correlation functions a.k.a factorial cumulants

¥

0.05

0.04

ي 0.15

0.

0.05

0 100

(a)

Latest STAR result on net-proton cumulants

K₄/K₂ above baseline K₃/K₂ below baseline

Shape of probability distribution

Simple two component model

Weight of small component: ~0.3%

Two component model

$$P(N) = (1 - \alpha)P_{(a)}(N) + \alpha P_{(b)}(N)$$
$$\bar{N} = \langle N_{(a)} \rangle - \langle N_{(b)} \rangle > 0$$

For P_(a), P_(b) Poisson, or (to good approximation) Binomial $C_n = (-1)^n K_n^B \overline{N}^n$ $n \ge 2$ C_n : Factoral cumulant K_n^B : Cumulant of Bernoulli distribution $\alpha \ll 1, K_n^B = \alpha \implies C_n \simeq \alpha (-1)^n \overline{N}^n$ $\implies |C_n| \sim \langle N \rangle^n$ as seen by STAR (i.e. "infinite" correlation length)

predict:
$$\frac{C_4}{C_3} = \frac{C_5}{C_4} = \frac{C_{n+1}}{C_n} = -\bar{N}$$
 $\bar{N} \simeq 15$

Clear and falsifiable prediction:

$$C_5 \approx -2650$$
 $C_6 \approx 41000$

Hades see similar trend (arXiv:2002.08701)

Multiplicity distribution @ 7.7 GeV

Now we need to figure out what this means....

First question: How does it look in the revised data?

Baryon number conservation and lattice susceptibilities

- Charges (baryon number, strangeness, electric charge) are conserved globally in HI collisions
- Lattice (and most other calculations) work in the grand canonical ensemble: charges may fluctuate
- Effect of charge conservation have been calculated in the ideal gas/HRG limit. NON-neglibile corrections especially for higher order cumulants (Bzdak et al 2013, Rustamov et al. 2017,...)
- Wouldn't it be nice to know what the effect of charge conservation on real QCD (aka lattice) susceptibilities is?

This can actually be done!

V. Vovchenko, O. Savchuk, R. Poberezhnyuk, M. Gorenstein, V.K., arXiv 2003.13905,

V. Vovchenko, R. Poberezhnyuk, V.K., arXiv:2007.03850

Subensemble acceptance method (SAM)

Partition a thermal system with a globally conserved charge *B* (canonical ensemble) into two subsystems which can exchange the charge

$$V = V_1 + V_2$$

Assume thermodynamic limit:

 $V, V_1, V_2 \to \infty; \quad \frac{V_1}{V} = \alpha = const; \quad \frac{V_2}{V} = (1 - \alpha) = const;$ $V_1, V_2 \gg \xi^3 \qquad \xi = correlation \ length$

The canonical partition function then reads:

$$Z^{ce}(T, V, B) = \sum_{B_1} Z^{ce}(T, V_1, B_1) Z^{ce}(T, V - V_1, B - B_1)$$

The probability to have charge B_1 in V_1 is:

$$P(B_1) \sim Z^{ce}(T, \alpha V, B_1) Z^{ce}(T, (1 - \alpha)V, B - B_1), \quad \alpha \equiv V_1/V$$

Subensemble acceptance method (SAM)

In the thermodynamic limit, $V \to \infty$, Z^{ce} expressed through free energy *density*

$$Z^{ce}(T, V, B) \stackrel{V \to \infty}{\simeq} \exp \left[-\frac{V}{T} f(T, \rho_B) \right]$$

Cumulant generating function for B₁:

$$G_{B_1}(t) \equiv \ln \langle e^{t B_1} \rangle = \ln \left\{ \sum_{B_1} e^{t B_1} \exp \left[-\frac{\alpha V}{T} f(T, \rho_{B_1}) \right] \exp \left[-\frac{\beta V}{T} f(T, \rho_{B_2}) \right] \right\} + \tilde{C}$$

Cumulants of B_1 :

$$\kappa_n[B_1] = \left. \frac{\partial^n G_{B_1}(t)}{\partial t^n} \right|_{t=0} \equiv \tilde{\kappa}_n[B_1(t)]|_{t=0} \quad \text{or} \quad \kappa_n[B_1] = \left. \frac{\partial^{n-1} \tilde{\kappa}_1[B_1(t)]}{\partial t^{n-1}} \right|_{t=0}$$

All κ_n can be calculated by determining the *t*-dependent first cumulant $\tilde{\kappa}_1[B_1(t)]$

Making the connection...

$$\tilde{\kappa}_{1}[B_{1}(t)] = \frac{\sum_{B_{1}} B_{1} \tilde{P}(B_{1}; t)}{\sum_{B_{1}} \tilde{P}(B_{1}; t)} \equiv \langle B_{1}(t) \rangle \quad \text{with} \quad \tilde{P}(B_{1}; t) = \exp\left\{tB_{1} - V \frac{\alpha f(T, \rho_{B_{1}}) + \beta f(T, \rho_{B_{2}})}{T}\right\}.$$
Thermodynamic limit: $\tilde{P}(B_{1}; t)$ highly peaked at $\langle B_{1}(t) \rangle$

$$A_{1}(t) = \exp\left\{tB_{1}(t) \right\}$$

 $\langle B_1(t) \rangle$ is a solution to equation $d\tilde{P}/dB_1 = 0$: $t = \hat{\mu}_B[T, \rho_{B_1}(t)] - \hat{\mu}_B[T, \rho_{B_2}(t)]$

where $\hat{\mu}_B \equiv \mu_B/T$, $\mu_B(T, \rho_B) = \partial f(T, \rho_B)/\partial \rho_B$

t = 0: $\rho_{B_1} = \rho_{B_2} = B/V$, $B_1 = \alpha B$, i.e. conserved charge uniformly distributed between the two subsystems

Second order cumulant

$$t = \hat{\mu}_{B}[T, \rho_{B_{1}}(t)] - \hat{\mu}_{B}[T, \rho_{B_{2}}(t)]$$
(*)

$$\frac{\partial(*)}{\partial t}: \qquad 1 = \left(\frac{\partial\hat{\mu}_B}{\partial\rho_{B1}}\right)_{T} \left(\frac{\partial\rho_{B1}}{\partial\langle B_1\rangle}\right)_{V} \frac{\partial\langle B_1\rangle}{\partial t} - \left(\frac{\partial\hat{\mu}_B}{\partial\rho_{B2}}\right)_{T} \left(\frac{\partial\rho_{B2}}{\partial\langle B_2\rangle}\right)_{V} \frac{\partial\langle B_2\rangle}{\partial\langle B_1\rangle} \frac{\partial\langle B_1\rangle}{\partial t}$$

$$\left(\frac{\partial\hat{\mu}_{B}}{\partial\rho_{B1,2}}\right)_{T} \equiv \left[\chi_{2}^{B}\left(T,\rho_{B_{1,2}}\right) T^{3}\right]^{-1}, \qquad \rho_{B_{1}} \equiv \frac{\langle B_{1}\rangle}{\alpha V}, \qquad \rho_{B_{2}} \equiv \frac{\langle B_{2}\rangle}{(1-\alpha)V}, \qquad \langle B_{2}\rangle = B - \langle B_{1}\rangle, \qquad \frac{\partial\langle B_{1}\rangle}{\partial t} \equiv \tilde{\kappa}_{2}[B_{1}(t)]$$

Solve the equation for $\tilde{\kappa}_2$:

$$\tilde{\kappa}_{2}[B_{1}(t)] = \frac{V T^{3}}{[\alpha \chi_{2}^{B}(T, \rho_{B_{1}})]^{-1} + [(1 - \alpha) \chi_{2}^{B}(T, \rho_{B_{2}})]^{-1}}$$

t = 0:
$$\kappa_2[B_1] = \alpha (1 - \alpha) V T^3 \chi_2^B$$

Higher-order cumulants: iteratively differentiate $\tilde{\kappa}_2$ w.r.t. *t*

Full result up to sixth order

 $\chi_n^B = \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} - \text{grand-canonical susceptibilities e.g from Lattice QCD!!}$

Details: Vovchenko, et al. arXiv:2003.13905

Cumulant ratios

Some common cumulant ratios:

scaled variance
$$\frac{\kappa_2[B_1]}{\kappa_1[B_1]} = (1 - \alpha) \frac{\chi_2^B}{\chi_1^B},$$

skewness
$$\frac{\kappa_3[B_1]}{\kappa_2[B_1]} = (1 - 2\alpha) \frac{\chi_3^B}{\chi_2^B},$$

kurtosis
$$\frac{\kappa_4[B_1]}{\kappa_2[B_1]} = (1 - 3\alpha\beta) \frac{\chi_4^B}{\chi_2^B} - 3\alpha\beta \left(\frac{\chi_3^B}{\chi_2^B}\right)^2$$

- Global conservation (α) and equation of state (χ_n^B) effects factorize in cumulants up to the 3rd order, starting from κ_4 not anymore
- $\alpha \rightarrow 0$: Grand canonical limit
- $\alpha \rightarrow 1$: canonical limit
- $\chi_{2n} = \langle N \rangle + \langle \bar{N} \rangle$; $\chi_{2n+1} = \langle N \rangle \langle \bar{N} \rangle$: recover known results for ideal gas

Net baryon fluctuations at LHC and top RHIC ($\mu_B=0$)

Lattice data for χ_4^B/χ_2^B and χ_6^B/χ_2^B from Borsanyi et al., 1805.04445

For $\alpha > 0.2$ difficult to distinguish effects of the EoS and baryon conservation in χ_6^B/χ_2^B , $\alpha \le 0.1$ is a sweet spot where measurements are mainly sensitive to the EoS

Estimates: $\alpha \approx 0.1$ corresponds to $\Delta Y_{acc} \approx 2(1)$ at LHC (RHIC)

Multiple conserved charges

(Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)

Key findings:

- Ratios of second and third order cumulants are NOT sensitive to charge conservation
 - This is also true for so called "strongly intensive quantities"
 - Requires that acceptance fraction α

is the same for both particles (or Q and S)

For order n>3 charge cumulants "mix".
 Effect in HRG is tiny

$$\kappa_4[B^1] = \alpha V T^3 \beta \left[\left(1 - 3\alpha\beta \right) \chi_4^B - 3\alpha\beta \, \frac{(\chi_3^B)^2 \chi_2^Q - 2\chi_{21}^{BQ} \chi_{11}^{BQ} \chi_3^B + (\chi_{21}^{BQ})^2 \chi_2^B}{\chi_2^B \chi_2^Q - (\chi_{11}^{BQ})^2} \right]$$

For explicit results up to order n=6, see arXiv:2007.03850

Multiple conserved charges

(Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)

Also works for non-conserved quantities such as protons, K and Λ

- Mixed cumulants involving one conserved charge such as $\sigma_{1,1}^{p,Q}$ scale like second order charge cumulants
 - Again, same acceptance fraction α for both p and Q, or k and Q

• Does NOT work for two non-conserved charges, such as $\sigma_{1,1}^{p,K}$

Multiple conserved charges (Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)

 Allows for corrections due to electric charge (protons) or strangeness (Λ) in addition to baryon number conservation.

Truth lies in between the "naive" corrections Likely bigger effect for higher orders.

Applicability and limitations

- Argument is based on partition in *coordinate* space; experiments partition in *momentum* space
 - OK for high energies where we have Bjorken flow
 - Still corrections due to thermal smearing. Under investigation.
 - Limited applicability for lower energies
- Thermodynamic limit i.e. $V_1, V_2 \gg \xi^3$:
 - Lattice calculations work with $V_{lattice} \simeq (5 \text{ fm})^3 = 125 \text{ fm}^3$. Chemical freeze out Volume at LHC ~ 4500 fm^3
- Not addressed: local charge conservation

Summary

- Preliminary STAR data:
 - consistent with "Bi-Modal" distribution at 7.7 GeV
 - Can be tested RIGHT NOW by STAR via higher order factorial cumulants
 - "Final", efficiency uncorrected multiplicity distribution does support idea of "Bi-Modal" distribution.
 - What about the revised data?
- Corrections for global (multiple) charge conservation in terms of grand canonical susceptibilities for ANY equation of state not just ideal gas
 - connection to lattice results
 - Applicable at top RHIC and LHC
 - Ratios of second and third order cumulants insensitive to conservation effects as long as acceptance fraction is the same

Thank You