Higher order cumulants of electric charge and strangeness fluctuations on the crossover line

J. Goswami¹, F. Karsch¹, S. Mukherjee², C. Schmidt¹ and D. Bollweg¹ HotQCD Collaboration

 $^1\mathrm{Bielefeld}$ University, $^2\mathrm{Brookhaven}$ National Lab

Criticality in QCD and the Hadron Resonance Gas, Wroclaw | 30.07.2020

QCD Phase Diagram

- 2 Fluctuations via lattice QCD
- 3 Electric charge fluctuations
- 4 Strangeness fluctuations

- ► Chiral crossover overlaps with chemical freeze-out in heavy ion collisions: T_{cf}(µ_B ~ 0) = 156.5 MeV [Andronic et al. Nature 2018].
- Transition region is accessible through HIC experiments.
- Cumulants of conserved charge fluctuations are ideal probes to study phase diagram: maxima along crossover line, divergence at CEP.

Figure: Freeze-out vs. chiral transition temperature from HotQCD [arXiv:1812.08235].

Goal: first-principle QCD predictions for cumulant ratios $M/\sigma^2, S\sigma, \kappa\sigma^2, ...$ etc.

 $M/\sigma^2, S\sigma, \kappa\sigma^2$ are accessible via generalized susceptibilities χ :

$$\chi_{ijk}^{BQS} \equiv \frac{1}{VT^3} \frac{\partial^{i+j+k} \log \mathcal{Z}}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k}, \quad \hat{\mu}_X \equiv \frac{\mu_X}{T}$$
$$M_X / \sigma_X^2 = \frac{\chi_1^X}{\chi_2^X}, \quad S_X \sigma_X = \frac{\chi_3^X}{\chi_2^X}, \quad \kappa_X \sigma_X^2 = \frac{\chi_4^X}{\chi_2^X} \quad \text{with} \quad X = B, Q, S$$

- Finite-density sign problem renders direct simulations at $\mu_B > 0$ impossible.
- Use constrained Tayor-Expansion in μ to access cumulants at finite density.
- Impose strangeness neutrality n_S = 0 and n_Q/n_B = 0.4 order by order corresponds to thermal conditions in HIC (e.g. Pb + Pb or Au + Au).

- Dynamical Fermions (HISQ) with N_f = 2 + 1: two light Quarks (up + down) and a strange Quark with mass ratio m_s/m₁ = 27. ⇒ physical meson masses in the continuum limit!
- Lattice sizes $32^3 \times 8$, $48^3 \times 12$ and $64^3 \times 16$ at 9 different temperatures each.
- Large simulation campaign on Summit in 2019 & 2020: Compared to our earlier analysis of baryon skewness and kurtosis [arXiv:1708.04897v3] we increased statistics in the vicinity of T_{pc} on $N_t = 8$ lattices by a factor 3-4 and on $N_t = 12$ lattices by a factor 6-8.

	$N_t = 8$	$N_t = 12$	$N_t = 16$
No. of Conf.	$1.2 \cdot 10^{6}$	$2 - 4 \cdot 10^5$	10^{4}

- High statistics data enable us to calculate cumulants up to N^3LO in μ_B (previous studies: NLO).
- ► All data on fluctuations in this presentation are HotQCD preliminary.

• Cumulant ratios are scanned in μ_B

$$R_{nm}^{X}(T,\mu_{B}) = \frac{\sum_{i} \frac{1}{i!} \chi_{n}^{X,i} (\frac{\mu_{B}}{T})^{i}}{\sum_{j} \frac{1}{j!} \chi_{m}^{X,j} (\frac{\mu_{B}}{T})^{j}}$$

- ▶ Results like Fig. 2 for each N_t are jointly fitted assuming $1/N_t^2$ corrections \rightarrow continuum extrapolation.
- ▶ The fitted surface can then be evaluated along arbitrary lines in (T, μ_B) if desired. In the following: $T_{\rm pc}(\mu_B)$

Figure: R_{12}^Q for $N_t = 8$ scanned in μ_B/T .

Electric charge fluctuations - R_{12}^Q

Figure: Left: Contributions to R_{12}^Q sorted by order in μ_B . Right: R_{12}^Q along $T_{pc}(\mu_B)$.

- ► R_{12}^Q dominated by leading order contribution $\sim \mu_B$.
- NLO contributions smaller by an order of magnitude.
- Mild temperature dependence.
- ► Ideal for extracting freeze-out chemical potential $\mu_{B,f} \Rightarrow$ "Baryometer"

Figure: R_{12}^Q for different N_t and continuum extrapolation along $T_{pc}(\mu_B)$.

Freeze-out chemical potential extracted by comparing to data from STAR¹:

$\sqrt{s}_{NN}~[{\rm GeV}]$	$\mu_{B,f}$ [MeV]	
200	19.4(1)	
62.4	58(1)	
39	92(2)	
27	131(3)	

Figure: R_{12}^Q for different N_t and continuum extrapolation along $T_{pc}(\mu_B)$.

¹[PRL 113, 092301 (2014)]

Dennis Bollweg

Electric charge fluctuations - R_{31}^Q

Figure: Left: R_{31}^Q at $\mu_B = 0$. Right: μ_B dependence around T_{pc} .

Strong temperature dependence/ weak μ_B dependence \Rightarrow "Thermometer"

Dennis Bollweg

Electric charge and strangeness fluctuations

Electric charge fluctuations - R_{31}^Q

Figure: Cont. estimate of $R_{31}^Q(T_{pc}(\mu_B))$.

- Lattice QCD estimate: $R_{31}^Q(T_{pc}(\mu_B)) = 1.07(9)$.
- ▶ PHENIX¹ Measurements of R_{31}^Q consistent with freeze-out at T_{pc} .
- ▶ Note: published PHENIX data use $N_T = 8$ lattice results \rightarrow too high T_f .
- ¹[Phys. Rev. C 93, 011901(R) (2016)]

Dennis Bollweg

Electric charge fluctuations - R_{31}^Q

Figure: R_{31}^Q via lattice QCD vs. different HRG calculations.

> R_{31}^Q shows large deviations from HRG in the transition region.

► T-dependence of $R_{31}^Q(T, \mu_B = 0)$ is not captured by any of the non-interacting HRG models

Electric charge fluctuations - R_{42}^Q

Figure: Left: R_{42}^Q at $\mu_B = 0$. Right: μ_B dependence around T_{pc} .

- ► Significantly smaller errors compared to R^Q₃₁ since noisy baryon correlations do not contribute to LO. LQCD Estimate: R^Q₄₂(T_{pc}, 0) = 0.73(5).
- Avg. over PHENIX data: $R_{42}^Q = 1.29(6)$ inconsistent with lattice results.

Strangeness fluctuations - $\mu_{S,f}$

• Constraint $n_S(\mu_B, \mu_S) \stackrel{!}{=} 0$ determines μ_S :

$$\frac{\mu_S}{\mu_B} = s_1(T) + s_3(T) \left(\frac{\mu_B}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_B}{T}\right)^4\right)$$

- ► s_n(T): Consists of combinations of χ^{BQS}_{ijk} directly accessible in LQCD.
- Main contribution to $s_1(T)$ comes from $\frac{\chi_{11}^{B1}}{\chi_{5}^{S}}$.
- s_n with $n \ge 3$ almost negligible.
- QCD result on μ_S/μ_B sensitive to strangeness content (in a HRG model).
- Excellent match with QM-HRG.

Figure: $s_1(T)$ and $s_3(T)$ from lattice QCD and HRG.

Strangeness fluctuations - $\mu_{S,f}$

Lattice QCD:

• Constraint $n_S(\mu_B, \mu_S) \stackrel{!}{=} 0$ determines μ_S :

$$\frac{\mu_S}{\mu_B} = s_1(T) + s_3(T) \left(\frac{\mu_B}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_B}{T}\right)^4\right)$$

- ► $s_n(T)$: Consists of combinations of χ_{ijk}^{BQS} directly accessible in LQCD.
- Main contribution to $s_1(T)$ comes from $\frac{\chi_{11}^{BS}}{\chi_2^S}$.
- s_n with $n \ge 3$ almost negligible.
- QCD result on μ_S/μ_B sensitive to strangeness content (in a HRG model).
- Excellent match with QM-HRG.

Heavy Ion Collisions:

• HRG relation for \overline{B} to B yields can be used:

$$\frac{\bar{B}}{B}(\sqrt{s}) = \exp\left(-\frac{\mu_B}{T}(2-2|S|\frac{\mu_S}{\mu_B})\right)$$

• $\frac{\mu_S}{\mu_B}$ obtainable by fitting yields for different particle species in |S|.

Strangeness fluctuations

Figure: μ_S/μ_B along $T_{pc}(\mu_B)$ vs. μ_S/μ_B extracted from STAR¹

• $\mu_{S,f}/\mu_{B,f}$ from strange baryon yields is consistent with lattice QCD results at $T_{pc}!$ ¹arXiv:1010.0142 & arXiv:1906.03732

Dennis Bollweg

Strangeness fluctuations - R_{32}^S and R_{42}^S

Figure: $R_{32}^S(T_{pc}, \mu_B)$ for $N_t = 8, 12$ lattices.

Strangeness fluctuations - R_{32}^S and R_{42}^S

Figure: Left: R_{42}^S at $\mu_B = 0$. Right: μ_B -dependence around T_{pc} .

- ▶ Precise calculations of $R_{12}^Q(T_{pc}(\mu_B))$ to NNNLO in μ_B enabled determination of $\mu_{B,f}$ from Event-by-Event fluctuation data by STAR.
- ▶ PHENIX data on R_{31}^Q are consistent with $T_f \sim T_{pc}$ when comparing to NNLO lattice QCD continuum estimates.
- Non-interacting HRG models are not suitable to describe thermodynamics of higher order electric charge fluctuations.
- ▶ μ_S/μ_B lattice QCD results are well described by QM-HRG which justifies extraction of $\mu_{S,f}$ from experimentally measured strange baryon yields.
- Apart from R_{42}^Q , electric charge and strangeness results are consistent with freeze-out at $T_{pc}(\mu_B)$.