Towards a Unified EoS for Multi-Messenger Astronomy

Michał Marczenko

colab: D. Blaschke, K. Redlich, C. Sasaki

Institute of Theoretical Physics University of Wrocław

Criticality in QCD and the Hadron Resonance Gas

30.07.2020

Parity Doubling in Lattice QCD Aarts et al, JHEP 1706, 034 (2017)

- Imprint of chiral symmetry restoration in the baryonic sector • N^{\pm} remain massive around T_c
- Expected to occur in cold and dense nuclear matter as well

Parity Doubling for Light Baryons Aarts et al, PRD 99 (2019) 1.6 octet (spin 1/2) S=0 [⊥] S=-11.4 1.2 N(-) $\Sigma(-)$ N(+)Σ(+) ٥ 0 $m(T)/m_+(T_0)$ ₫.₫. ₫ ₹ S=-2 S = -11.4 1.2 Ξ(-) $\Lambda(-)$ $\Xi(+)$ $\Lambda(+)$ Δ .₹..₹. 0.2 0.6 0.8 0.2 0.4 0.8 0 0.4 0 0.6 T/T_{c}

Parity Doubling for Light Baryons Aarts et al, PRD 99 (2019) 1.6 decuplet (spin 3/2) S=0 S=-11.4 1.2 $\Sigma^{*}(-)$ $\Delta(-)$ $\Delta(+)$ $\Sigma^{*}(+)$ 0 ٥ • S = -21.4

Parity Doubling in SU(2) Chiral Models DeTar, Kunihiro PRD 39 (1989)

$$m^{\pm} = \frac{1}{2} \left[\sqrt{4m_0^2 + c_1^2 \sigma^2} \mp c_2 \sigma \right] \xrightarrow{\sigma \to 0} m_0$$

The model has been applied to hot and dense hadronic matter, neutron stars, as well as the vacuum phenomenology of QCD

Hybrid Quark-Meson-Nucleon Model Benić, Mishustin, Sasaki, PRD 91 (2015) Parity Doublet Model + Quark-Meson Coupling Statistical Confinement UV cutoff: $\theta \left(\alpha^2 b^2 - p^2 \right) f_N$ + IR cutoff: $\theta \left(p^2 - b^2 \right) f_q$ model parameter

 \blacksquare similar scaling as in Ex. Vol. approaches: smaller values \rightarrow earlier onset of stiffening

Constrained by nuclear GS, compressibility, symmetry energy

Phase Structure in Isospin-Symmetric Matter

- Sequential phase transitions
 - $\alpha \rightarrow \text{Critical Point} (T_c^{\text{chiral}} \lesssim 40 \text{ MeV})$
 - 1st Order Deconfinement Transition
- Quark-vector coupling: $g^q = \chi g^N$
 - onset of quarks shifted
- $\chi {\rm PT}$ within the proton flow constraint
- possible signals in dilepton production Sasaki, PLB (2020)

Isospin-Symmetric Phase Diagram

- Rich structure: clear separation into three regions at low T → 3 CEPs
 confined & *x*SB; confined & *x*SR; deconfined
- Interplay btw. LG and chiral transition important at intermediate T
- Signal from chiral PT seems stronger than LG at higher temperature?
- Deconfinement at high μ_B

EoS in Asymmetric Matter, T=0, MM, Blaschke, Redlich, Sasaki, arXiv:2004.09566

- Quark appearence splits due to asymmetry: additional intermediate phase
 - confined & χ SB; confined & χ SR; confined & χ SR & d quark; deconfined
- Possible indication of quarkyonic phase
- cooling and transport properties?
 - $\hfill\blacksquare$ relevant for thermal and rotational evolution of compact stars

```
Blaschke, Sandin, Klähn, Berdermann, PRC (2009)
```

Mass-Radius Profile and Particle Content

- Flattening due to chiral symmetry restoration, not deconfinement
- $M_{\rm max}$ reached in hadronic branch
- Quarks always in unstable branch
- Onset of quarks possibly reduced by attractive diquark interaction Klähn et al, PLB (2007)

Multi-Messenger Astronomy: Tension Between Constraints

- \blacksquare Tidal deformability from GW170817 \rightarrow soft pressure at $\sim 2\rho_0$
- $\blacksquare~2~M_{\odot}$ observations \rightarrow high pressure at $\gtrsim 2\rho_{0}$

Limit the parameter space

Swift increase of pressure needed
 Large speed of sound at ≥ 2ρ₀

Large c_s^2 and the nature of dense matter, Marczenko, arXiv:2005.14535

- \blacksquare Conformal limit broken already in $1.4 M_{\odot}$ NS
- Lower bound for c_s^2 of 1.4 M_{\odot} NS Reed et al PRC (2020)
- Stiffening of EoS provided through the confining mechanism
- Similar to quarkyonic models

Conclusions

Hybrid QMN model - attempt at unified description of hadron-quark matter

- Chiral symmetry restoration and deconfinement well separated;
 - quarkyonic matter scenario?
 - cooling and transport properties?
- 2 M_{\odot} NS with chirally restored but confined core;
- Existence of hybrid stars rather excluded;
 - generalization to include CSC phase;
- Incorporating deconfinement essential factor in explaining the large-speed-of-sound scenario;
- Model well-suited for further applications in simulations of NS mergers, supernova events or HIC.

Thank You

Parity Doublet Mode: Phase Diagram

Constraints

