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Success of Bayesian approach
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Success of Bayesian approach
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Success of Bayesian approach
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Model parameters (input): X = (xi, ..., Xn)

Y

Model output ¥ = (y1, ..., Ym) < Experimental data y <P

We'd like to find the most probable parameter values X given y P,
which is a conditional probability:

P(X A 7o)

P()—(’yexp) = P();’exp)

Likewise the probability of the observation y*® on the condition of
X is P A 759)
XNy
(791%) = =5
Combining the two conditions gives

P(yPIX)P(X)

P()?b?e)(p) = P(};’exp)



Bayes' theorem

‘ Posterior probability oc Likelihood - Prior knowledge

P(Xly®®) = ¢ L(y*PIX)p(X)

» P(X|y®®P): Posterior probability of X on the condition of
observation y€*P

» L(y*P|X): Likelihood of observation y**® for a given X
» p(x): Prior probability of X before data comparison
> &= [.L(y®P?|X)p(X): Bayes evidence (normalization)



Likelihood function

Simple example: yx(x) = kx, determine linear coefficient k

Prior: k is between 0.1 and 1.5, uniform probability distribution
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Observation A: y4 = 2.25+0.45 at x4 = 3.0
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Simplistic likelihood: L£(k) = constant if
ya —0a < yk(xa) < ya+ oa, 0 otherwise
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Add a more accurate observation B: yg = 2.6 +0.3 at xg = 4.0
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Problem: Product of step functions accounts only for the
intersection of the two measurements
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More typical choice for the likelihood:

L(k) = exp (—% [(Yk(xA)z—yAF " (yk(xB)z—yB)ZD
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Mahalanobis distance

We would like to generalize the likelihood function for arbitrary
dimensions.

This can be conveniently done using Mahalanobis distance

i3, B) = /(5— B)TE1(7— b).

where ¥ is the covariance matrix containing the uncertainties (in
the previous example & = diag(c3,03))

We can then define the likelihood as

L= \/|217r72‘ exp (—@)

where the determinant |27X| functions as a penalty factor for
estimates which have large uncertainties



Caveat of uniform prior probability

Uniform prior = Shape of posterior ~ Likelihood (Data-driven
posterior)

However, while uniform priors are non-informative within the
defined interval, they become very informative at the edges!
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Conjugate prior
In cases where we can write our likelihood as a normal distribution
with a known, constant variance o2

L(y) o exp [—;2 > - y)2] x exp |55 ((y) = )7
i=1

its conjugate prior is a normal distribution

p(y) o exp [2;23@ it

This means the posterior distribution belongs to same distribution
family as the prior (i.e. normal):

P(y) o exp {—;g(y - un)z]

=

with 02 = 7{70721%_2 and p, = o2 (Ug//)n + 75)
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Bayes factor

The evidence £ = [ L(y®P|X)p(X) can usually be ignored when
determining best-fit parameters for a model, as we're most
interested in ratios of likelihood

It can, however, be used to compare the credibility of two
competing models M4 and Mpg:

—

Bayes factor Bjr = %ng)

Bag > 1 = model A preferred over model B. If we have no prior
preference, p(Ma) = p(Mg) and the Bayes factor is simply the
ratio of evidences:

Ban — £ — S LAY P1Xa)pa(xa)
AB ™ & T g L271xE)ps ()




Example: 1-parameter model My : y = kx
vs. 2-parameter model M, : y = kx"
Bayes factor By, ~ 0.8 = No significant preference

5
0.9 4
0.8 3
< >
0.7 2
0.6 1
0.5 0.25 0.50 0.75 1.00 1.25 00 1 2 3 4 5
k X



Example: Measurement (likelihood): (y) =1.0, 0 = 1.0
Model A prior: uas = 0.0, o4 = 1.0
Model B prior: ug = 0.0, og = 0.5
Model C prior: puc =1.0, oc = 0.5
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Often in practical applications with several model parameters, the
exact expression for posterior probability distribution becomes
difficult to obtain

= Use Markov chain Monte Carlo method to sample the
posterior



Monte Carlo sampling of x from a distribution f(x):

» Pick a random value x, from the uniform range [Xmin, Xmax]
» Pick a random value f, from the uniform range [fmin, fmax]
» If f(x,) > f,, accept x,
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Markov Chain Monte Carlo

Stochastic process (discrete time): Indexed collection of random
variables {R(t;)}N, = {R}V,

Markov chain: A stochastic process where the future states depend
only on the present state (Markov property or "memorylessness")

p[Rn+1 = r|R1 = n,..., Rn = r,,] = p[Rn+1‘Rn = I’n]

Examples:

» Discrete time: 1-d random walk starting at 0 with possible
steps -1 and 1

» Continuous time: Brownian motion



The goal: Generate samples x; — x;11 such that the distribution of
samples d(x) = m(x)/n (m(x) being the number of samples in a
region around x) converges to the posterior distribution P(x) as
n— oo

To ensure convergence, we require detailed balance (reversibility)

(xi—=xit1) _ P(xii1)
(Xit1—xi) P(xi)

p(xi = xi41)P(xi) = p(xit1 — xi)P(xi41) = &

We decompose the transition probability p(x; — xj+1) to a
proposal distribution @ and acceptance probability A:

p(xi = xiy1) = Q(x — xip1)A(X — Xit1)

For A to satisfy detailed balance, we must have

Alxi—=rxiz1) _ P(Xiy1) Qxie1—xi)
A(Xip1—x7) P(xi)  Q(xi—rxit1)




Metropolis-Hastings algorithm:

Metropolis acceptance criterion

Ll A

. . — i P(xit1) Q(Xix1—xi)

A(Xi = Xj+1) = min {1, P(X*[) Q(x,-;x;ﬂ)}
Draw a proposal for x; — xj,; from Q
Compute acceptance probability A(x; — x/_ ;)
Pick a random number r from uniform range [0, 1]
If A(xi = xi, 1) > r, accept the proposed move and set
Xiy1 = Xj, 1. Otherwise set xj1 = x;
Set i = i + 1 and repeat the process



Example: 1-parameter model with step proposals from the normal
distribution

QUK ko) = e (10 /C00),

A(ko — k") = min {L Lc((kkl))%}
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MCMC has a "burn-in" period that depends on the initialisation of
the chain and the proposal distribution Q — plot the trace (chain
values vs time) to estimate the number of steps to discard from the
start of the chain

Any given sample k; will be correlated with the previous sample k;_1
and the following sample k;;1, and the strength of the correlation
depends on the acceptance probability A (rejecting the proposed
new position means k; and k;+1 will be maximally correlated).
These correlations reduce the sampling quality of MCMC



Ways to quantify chain quality:

N (accepted)

Acceptance fraction f; = N(proposed)

» f, < 1: Strong correlations, poor sampling quality
» f, ~ 1: Distribution of samples is @ instead of P
» Rule of thumb: 0.2 < £, < 0.5

Autocorrelation time

» Autocovariance function with respect to lag T for a chain of

M samples: C(T) ~ T Z (XT+n = () = (x))

» Autocorrelation time 7. = 1 + 227_ ) CC((Z)'))

where Mc = min{m > K1(m)},, ), for a constant K ~ 5



Parallel tempering

If the posterior distribution has multiple peaks, using parallel
tempered MCMC (PTMCMC) might provide better results (at the
cost of computation time)

As the name suggests, PTMCMC runs several chains in parallel,
each chain sampling a different modified posterior defined by
inverse temperature =1/ T ("thermal noise"):

Ps(x]y ) = [L(7*?I))p(X)

Two chains swap walker positions at pre-determined intervals with

probability
. L(x Bi—Bi
A;J—mln{<LEng> ,1

f—=0(T =00)=Psg—p
f—=1(T—=1)=Psg— P




We can obtain the full integral over the parameter space (i.e. the
evidence &) using parallel tempered MCMC and thermodynamic
integration

Let's redefine the evidence as a function of inverse temperature 3:

= JJLT PR p(X) = [ L°(X)p(X)
This satisfies the differential equation
W2 — o [ 1oglL(R)LA ()]p(%) = (log L)

Integrating over 3 gives the evidence estimate:

log £(1 fo dB (log L)




Gaussian process

Markov chain Monte Carlo requires a large number of model
evaluations for the likelihood function.

However, it can take hundreds of CPU hours to simulate a heavy
ion collision event.

= Need a method for producing quick approximations for the given
model parameter values
= Model emulation using Gaussian processes

Reminder: stochastic process in discrete time: Indexed collection of
random variables {R(t;)} Y ;.




Gaussian process: A stochastic process, in which every finite set

{Y;}¥ | is a multivariate Gaussian (or "normal") random variable
N(p, X), where

n= {,ula "'7MN}

is the mean and

v(1,1) - v(1,N)
2= : :

v(N,1) -+ v(N,N)

is the covariance matrix. The covariance function (or "kernel")

v(i,j) is symmetric (v(i,j) = v(j,i)) and positive semidefinite
(v(i,j) = 0).



Gaussian process examples
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Gaussian process examples

M(i)=i,2=1,1sample M) =i, Z=1,5 samples
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Gaussian process examples

p=0, v(i,j)=0.9"-1, 1 sample u=0, v(i,j)=0.9"J, 5 samples
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Multivariate normal random variables

Multivariate normal random variables have the following important
property:

Let A~ N(u,X) be a n-dimensional normal random vector. If

B = c + TA is an affine transformation with m-dimensional vector
c and a constant m x n-dimensional matrix T, then

B~N(c+ Tu, TETT).



Let's denote a joint distribution for normal random vectors A and B

= (8) - () (32 2)

Let us then define a transformation matrix T (assuming ¥ 5

exists!)
(1 —ZapXg!
T= <o /

Now the affine transformation J' = T(J — py) is also a joint
normal distribution:

J_ AN (A—pa—TagTz (B — 1)
a B’ - B—/,LB

0 YA—YAgXa'¥pa O
(o) (™ 1))



Al 0 YA—YAgY¥a'Ysa O
(5) = (o) (757 1))

A’ and B’ are jointly normal and uncorrelated = A’ is independent
of B/

= A’ is independent of B

= Conditional probability distribution of A" with fixed B = by:

Alg—py ~N(0,Z4 — TasE5'Tpa)

A=A+ pa+YagT5" (bo — pg), where g + SagT5" (bo — 1)
is a constant

= | Alg=b, ~ N (pa+ZasTg (bo — 118), L4 — AT 5 T5a)




To summarise: if A and B have the joint probability

(5) -~ ((a)- (o %)

then A has a conditional mean

Alg=by = tia+ XasZg (bo — 1g)

and conditional covariance

ValB=h, = XA — ZasX 5 XBA
for a fixed B = bg.
If we have a function f with a set of known values Y = {f(x;)}V |,

we can use this result for predicting function values at other points
x" with the associated uncertainty!



Gaussian process regression

The problem: We need to know the covariance matrix for the given
data Y.

Typical choice for the covariance function: squared-exponential with
variable amplitude 64, correlation length 6, and a noise term 0,pjse:

x — x')?
V(Xa X,) =04 exp _(72) + OnoiseOxx’
207
The hyperparameters 0= (64,01, 0noise) are not known a priori and
have to be estimated from the model data Y by maximising the
log-likelihood

- 1 1, 1 =, N
log P(Y10) = =3 YT H0)Y —5 log [Ty (0)| - log(27)
data fit complex;c; penalty normalization

This is known as emulator training.



1-D example
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1-D example

u(x)=0.0

§  6,=1.006,=2.00
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1-D example
Effect of the mean function

u(x)=0.0 HX) = (y1+y2)/2
§  6,=12.506,=2.20 §  64=12.506,=2.20
6 o 6
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1-D example

0.0, training points: 5

uix) =

f(x) = axsin(bx)
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Let the set of known function values be Y = {f(x;)}¥; and the
prediction point be y = f(X).

> Since the point % is correlated with all data points {x;},, the
ordering of points x; (i.e. the indexing) in the set Y does not
matter

> x; and X can be vectors with arbitrary many dimensions. The
squared-exponential covariance function can be generalized to
M dimensions by introducing a new correlation length for each
dimension:

M

V(%) = O ex (B — ()e)* s
( l) Oa P < Z:l (QL) ) + 9n0|se5xx,-

= Gaussian process regression is immediately applicable for a
parameter space with arbitrary many dimensions!



Training data selection

As the GP prediction variance increases quickly in the absence of
nearby conditioning points, the points in the dataset {(x;, f(x;))}
should be evenly distributed over the investigated parameter space.

Most straightforward solution: A grid over the parameter space.
However, the number of points required increases quickly with
higher dimensions

More economical solution: Latin hypercube sampling

» For N samples, partition the parameter range into N
equal-probability intervals

» Sample parameter values within the intervals, optionally
maximising the minimum distance between samples (by
iteration)

» Rule of thumb: At least 10 samples per dimension



Emulator validation

We want to use Gaussian processes as surrogate models or
"emulators" which can provide quick estimates for model output
with quantified uncertainty. In such cases we rarely can compare
the GP predictions to analytical results.

How can we assure ourselves that the emulator is working correctly?

Two sets of data are needed:
» Training set used for conditioning and tuning the GP emulator

» Validation set, consisting of points which are not in the
training set



For a small number of samples (O(10)), we can try to assess the
emulator quality simply by plotting the validation set predictions
against the true values from the model

If we have a larger number of samples (O(100)), we can plot the
Zz-scores:
Yi — Vi
zi= ">
V Vi
Since the emulator prediction consists of conditional mean y and
variance v, we expect the distribution of z-scores to approach the

normal distribution A(0, 1) as the sample size increases

20 validation points 500 validation points

12.5
§  64=3909.53 6,=6.17 Boise = 0.024 04
© 10.0 c
© So3
g 75 5"
= 2
v 5.0 o2
a 0
O 55 Do1
0.0

25 50 7.5 10.0
True value z-score



While Gaussian processes are able to handle multidimensional input
parameter spaces X, the prediction y(X) is always a scalar

m observables = m Gaussian processes needed for model
emulation. However, in heavy ion collisions with multiple different
particle types and centrality classes, m can be up to ©(100)

As the calculation of emulator predictions involves potentially
high-dimensional matrix multiplication, the computational costs can
become notable




Principal component analysis

Let's represent the model output with a n x m matrix M, where n is
the number of simulation points and m the number of observables

In preparation for the principal component analysis, we need to
normalize the data columns (either with their sample standard
deviations or with the corresponding experimental values) to obtain
dimensionless quantities of similar scale, and center by subtracting
the mean of each observable from the elements of each column

Note: PCA assumes that variance is a good measure of the spread
of data. If this is not the case (if the data is skewed, for example),
further transformation methods are needed, such as Box-Cox

transformation N
;5 fora#£0
log(y) forA=0




We want to find an eigenvalue decomposition of the m x m
covariance matrix MT M:

M™M= VAVT,

where A is the diagonal matrix containing the eigenvalues A1, ..., A\p,
and V is an orthogonal matrix containing the eigenvectors. This
decomposition is found by factorising M via

singular value decomposition:

M= USsvT

» n x n orthogonal matrix U contains the left-singular vectors of
M, which are eigenvectors of MMT

» n x m rectangular diagonal matrix S contains the singular
values of M (square roots of M M eigenvalues)

» m x m orthogonal matrix V contains the right-singular vectors
of M (eigenvectors of MT M) — these are the
principal components (PCs)




Principal component space is rotated and stretched in the direction
of the first principal component(s). First principal component
represents the direction of largest variance in the output space,
second PC the direction of second largest variance, etc.

» Fraction of variance explained by principal component pq:
_ Aq
Var(pq) = =

i=1
» Select the number of principal components which together
explain desired fraction of total variance; often only a few PCs
are needed to explain 99% of the variance




The transformation of a vector y from observable space to a vector
Z in the reduced-dimension principal component space is

Z=y Vi,

while for matrices (such as the covariance matrix) the
transformation is
T
Y, =V, ¥, Vi

To compare an emulator prediction Z6P against physical
observables, we use the inverse transformation

yGP — ZGP VkT'



Likelihood function with GP and PCA

1 D U
27(T o + Tep)| P <_2(ZG’” ~ Zew) (e +Tap) " (Zp - Zex”)T>
exp

» Zip is the emulator prediction at the input parameter point x*

> Zep is the experimental data transformed to principal
component space

> Y p is the predictive variance (emulator uncertainty)

» > op is the experimental error squared, transformed to PC
space



Example: Model output M consisting of two column vectors m;
and my sampled from a bivariate normal distribution (number of
samples n = 100)

mm)~x(00 053 7))

) —

. o o
‘e PC1(77.9%)
. [+

~p 3 (22.1%)
.

my

vi = 1.0, v, = 2.0, 1:2 ratio vi = 1.0, v» = 3.0, 1:3 ratio



Example: Model output M consisting of 10 column vectors my ...
m1o sampled from a multivariate normal distribution (number of
samples n = 200)

Vil o V110

vio,1 V10,10

Variance fractions for first 6 PCs: 0.583, 0.359, 0.0327, 0.00832,
0.00729, 0.00496 (> 99.5% of total variance)

Average transformation error with dimension reduced to 6
(7 = (viV6) Vs )

nh= lyil



Closure testing

The final check before performing calibration to experimental data
is closure testing, i.e. using pre-calculated model data (such as the
validation data) as target value. This checks

> if the posterior probability distribution peaks at the original
known parameter values (how credible is the analysis result)

» how wide is the distribution (how constraining is the dataset
used in the analysis)



Example

Three-parameter model y(x; a, b, ¢) = ax — bx? + cx3 calibration
to measured values yp at xp = (0.5,1.5,2.5,3.5) with 5% errors

5<

-——=- a0=?,b0=?,c0=? /

41 /

-




Let's assume uniform prior distributions with ranges a € 0.0, 10.0],
b €[0.0,5.0], c € [0.0,1.0]. We sample 30 training points and 10

validation points from this cuboid.

4 measurements = 4 GP emulators. GP emulator kernels shall be

squared-exponentials with 3 correlation lengths

10 validation points 10 validation points

I

10

w

GP estimate
- N
GP estimate

o
|
&
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Closure test on GP + MCMC calibration using validation point 1

1.5 ---- median 3.99 (+9.3%/-9.8%) ---- median 0.249 (+136.0%/-90.8%)
—— true 3.86 2.0 —— true 0.0467
1.0 | 15
1.0
0.5 '
: 0.5
0.0 — 0.0 —LLL
0 2 4 6 8 10 0 1 2 3 4 5
a b
64 ---- median 0.881 (+11.7%/—12.2%5
—— true 0.827
4 M
2
0 |
0.0 02 04 . 0.8 1.0




Closure test on GP + MCMC calibration using validation point 5

—r —
---- median 5.2 (+10.9%/-11.6%) ---- median 2.63 (+22.0%/-23.5%)

1.0 — true5.15 1.0 — true 2.56
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Calibration on measurements

Param a marginal distribution Param b marginal distribution
T T
2.5 ---- median 1.88 (+12.0%/-12.4%) 3 ---- median 0.925 (+21.9%/-25.2%)
— true 2 — truel
2.0 E :
1.5 2
1.0
1
0.5
0.0 i 0
0 2 4 6 8 10 0 2 3 4 5
a b
1s Par?r:n ¢ marginal distribution 5 == 90% credible interval
---- median 0.187 (+23.6%/-28.0%)
— true 0.2 4
10 3 g
| >
I 2 T
5 i T
1 x
0 Jj | 0{ ~
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4



Analysis procedure

Choose prior distribution and target observables

4

Produce training data for emulator conditioning

4

Determine required number of Gaussian processes with PCA

4

Condition the emulators on training data and validate with separate
data

4

Closure testing

4

Calibrate on experimental data



Example analysis: 7/s sensitivity to EoS

Temperature dependence of 7/s of strongly interacting matter: effects of the equation
of state and the parametric form of (n/s)(T)

Jussi Auvinen,!>*|Kari J. Eskola,?? Pasi Huovinen,4 Harri Niemi,?? Risto Paatelainen,® and Péter Petreczky®
L Institute of Physics Belgrade, 11080 Belgrade, Serbia
2 University of Jyvaskyla, Department of Physics,
P.O. Boz 35, FI-40014 University of Jyvaskyla, Finland
3 Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland
4 Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroctaw, Poland
5 Theoretical Physics Department, CERN, CH-1211 Geneve 23, Switzerland
S Physics Department, Brookhaven National Laboratory, Upton, NY 11978, USA

PRC 102, 044911 (2020), arxiv:2006.12499



Baseline EOS: P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010)
P s95p: M < 2 GeV hadron gas particles from 2004 PDG summary tables,
lattice data used for fitting: Phys. Rev. D 80, 014504 (2009); Phys. Rev. D 77, 014511

(2008)

NeW parametrizations: J. Auvinen, K. J. Eskola, P. Huovinen, H. Niemi, R. Paatelainen,

P. Petreczky,
PRC 102, 044911 (2020) [arXiv:2006.12499 [nucl-th]]

> : HG: 2018 PDG summary, lattice: stout action PLB 730, 99 (2014)
P s87hos: HG: 2004 PDG, lattice: HISQ PRD 90, 094503 (2014), PRD 97, 014510 (2018)

P s88hig: HG: 2018 PDG, lattice: HISQ PRD 90, 094503 (2014), PRD 97, 014510 (2018)

6 T T T T 0.3 T T T
‘- stout
5 s HISQ, Ny = 12— 0.28
! HISQ, Ny = 10 —e— 0.26
HISQ, Ny =8 ——
. 4 sBors 0.24
5 5 25 $87hgs - - - ~, 022
@ N 88hyg — - - ° 02
S . \
2 \%:95” 018 |\
1 "?é\.._-u\ 0.16 \'"-\_ . .'.
0.14 7"
0.12
100 200 300 400 500 600 100 150 200 250 300

T [MeV] T [MeV]



EKRT+hydrodynamics model

» Initial energy density from the EKRT minijet saturation model

Paatelainen et al., Phys. Rev. C 87, no. 4, 044904 (2013); Phys. Lett. B 731, 126 (2014)
— — _ K( ) — 4. — _ —
e(rT7 Ts(rT)) = ;r“ [psat(rTa Ksat)] ' 7's(rT) = 1/psat(rT; Ksat)
For each centrality class, produce a number of energy density
profiles, convert to entropy density via EoS, and average over
events

» 241D viscous hydrodynamics with piecewise linear
temperature dependence on shear viscosity coefficent 17/s  niemi
et al., PRC 93, 024907 (2016)
(n/s)(T) = Suc(Tu—T)+ (1/S)min, T < Tu
(77/5)(7-) = (n/s)mina 7—H < T < TH + Wmin
(n/s)(T) = Sqcp(T— T — Winin)+(1/8)min, T > T+ Winin

» Kinetic decoupling temperature Ty.. and chemical freeze-out
temperature T,em are also free parameters



Bayesian analysis

Model parameters (input): X = (x1, ..., Xp)
(Ksatr (TI/S)minv TH: Winin SHG: SQGPx Tde<:v Tchem )
(S

Model output ¥ = (y1, ..., ym) < Experimental values y **P

» charged particle multiplicity at midrapidity, dN.,/dn and
4-particle cumulant pr-averaged elliptic flow, v»{4}, in
Au+Au collisions at /syny = 200 GeV and Pb+Pb collisions at
V/Snn = 2.76 and /syny = 5.02 TeV

» Identified particle multiplicity dN;/dy, and average transverse
momenta (pt);, of pions (7 1), kaons (K™) and protons (p) in
Au+Au collisions at \/syny = 200 GeV and in Pb+-Pb collisions
at /sy = 2.76 TeV

Centralities: (10-20)%, (20-30)%, (30-40)%, (40-50)% and
(50-60)%.



Bayesian analysis

90 observables = Reduce to 6 principal components for GP
emulation
GP training with 170 points, validation with 30 points

o T oS 0.12
= 10001 Pb+Pb 2.76 TeV (20-30)% = Pb+Pb 2.76 TeV (20-30)%
8 N charged S vy charged
2 s95p (3 £0.10 s95p
£ 800 K
& £.0.08
S 8
< o0 = 0.06
& =
400 0.041_"®

400 600 800 1000 0.04 0.06 0.08 0.10 0.12
Simulation result Simulation result



Posterior probability
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Observables at /syny = 200 GeV

Charged particle yield

Elliptic flow v2{4}

600 Au+Au 200 GeV B s83s1s Au+Au 200 GeV
500 & s8Thy 0.08
A $88hys
£ 400 @ﬁw ¥ o5 0,06 Eﬁ@%? %@H $ﬁ§
00 % PHENIX | IL 583518
Z od%y 20.04 Eﬂﬁw <1> s8Thog
200 ITKY A s88his
100 SN 0.02 ¥ s95p
Egav Y STAR
0.00

1020 20-30  30-40  40-50  50-60
Centrality [%)

10-20  20-30  30-40 40-50  50-60
Centrality [%)

Experimental data: STAR, PRC 79, 034909 (2009) Experimental data: STAR, PRC 72, 014904 (2005)



Observables at /syy = 2.76 TeV

Charged particle yield Elliptic flow vo{4}
; 0.125 -
_ | Pb+Pb 2.76 TeV B sS3on Pb+Pb 2.76 TeV
120 & 8T 0.100
L1000 4 B sssing @%Y@%?@%?
= o34 ¥ 0% -0.075 a4
2 750 Sk ALICE | X 0 s83s1s
=T odke < .050{ 2BY O s87h,
N mﬁw A s88his
250 =6av 0.025 ¥ s
EeRY % ALICE
0020 2030 3040 4050 500 CP0TI00 2030 30740 4050 5060
Centrality [%] Centrality (%)

Experimental data: ALICE PRL 106, 032301 (2011) Experimental data: ALICE PRL 116, 132302

(2016)



Observables at /syy = 5.02 TeV

Charged particle yield

1500
1200

900

dNg,/dn

600
300

Elliptic flow vo{4}

Pb+Ph 5.02 TeV B ss30ss 0.125] Ph++Pb 5.02 TeV
2 ssTho 0.100
B 588 : iloyS2
@ﬁw ¥ s95p ==0.075 ety 2 @%T % @%§
% ALCE | o B s83ss
odi = 0.050{ 2¥3% & 87y
ﬁv A s88his
A 4 0.025 ¥ 95
SN x ALICE
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Centrality [%]
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Experimental data: ALICE PRL 116, 222302 (2016) Experimental data: ALICE PRL 116, 132302

(2016)




EoS posterior distribution comparisons
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Posterior (1/s)(T)

1.2 union of 90% credible intervals
1.0 intersection of 90% credible intervals "
— $83s15 median >

__0.8{ == s87hgy median 7|
& | =" 885 median ‘/
5 0.67 =+ 595p median .7
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0.4
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» Tightest constraints on 7)/s in the temperature range
T =~ 150-220 MeV, where 7/s is approximately constant

> All EoSs: 0.08 < 1/s < 0.23
s83s1g and s88h1g: 0.12 < 1/s < 0.23

v

> Differences between equations of state within uncertainties



Example analysis: JETSCAPE transport coefficients

Multi-system Bayesian constraints on the transport coefficients of QCD matter

D. Everett,! W. Ke,>? J.-F. Paquet,* G. Vujanovic,” S. A. Bass,* L. Du,! C. Gale,® M. Heffernan,® U. Heinz,'
D. Liyanage,' M. Luzum,” A. Majumder,’ M. McNelis,' C. Shen,>® Y. Xu,* A. Angerami,’ S. Cao,’ Y. Chen,'*!!
J. Coleman,'? L. Cunqueiro,'>'# T. Dai,* R. Ehlers,'>!* H. Elfner,'> 17 W. Fan,* R. J. Fries,'®'° F. Garza,'31°
Y. He,?® B. V. Jacak,23 P. M. Jacobs,?3 S. Jeon,® B. Kim,'8:'° M. Kordell IL,'% ° A. Kumar,’ S. Mak,'?
J. Mulligan,>3 C. Nattrass,'* D. Oliinychenko,? C. Park,’ J. H. Putschke,’® G. Roland,'®!! B. Schenke,?!
L. Schwiebert,”2 A. Silva,'® C. Sirimanna,” R. A. Soltz,>° Y. Tachibana,’ X.-N. Wang,?*%3 and R. L. Wolpert!?
(The JETSCAPE Collaboration)

PRC 103, 054904 (2021), arxiv:2011.01430



JETSCAPE multistage model (18 parameters):

» Initial transverse energy density profile €(x, y) from Trento

— (e}
» Free streaming until 74(7r, ) = 7R (%)

4.0GeV

» 2+41d viscous hydrodynamics with both shear and bulk viscous

effects

» Hadron transport

Norm. Pb-Pb 2.76 TeV N[2.76 TeV]
Norm. Au-Au 200 GeV/ N[0.2 TeV]
generalized mean P

nucleon width w

min. dist. btw. nucleons d3,
multiplicity fluctuation ok

free-streaming time scale TR
free-streaming energy dep. | o
particlization temperature T

[10, 20]
13, 10]

[-0.7,0.7]

[0.5, 1.5] fm

[0, 1.73] fm3
[0.3,2.0]

[0.3, 2.0] fm/c
[-0.3,0.3]

[0.135, 0.165] GeV

temperature of (r/s) kink
(n/s) at kink

low temp. slope of (1/s)
high temp. slope of (r/s)
shear relaxation time factor
maximum of ({/s)
temperature of ({/s) peak
width of (¢/s) peak
asymmetry of (¢/s) peak

T
(1/8)kink
Aow

@high

br
(¢/8)max
Te

we

A¢

[0.13,03] GeV
[0.01,02]
[-2,1]Gev—!
[-1,2] Gev—!
[2,8]

[0.01,0.25]
[0.12,0.3] GeV
[0.025, 0.15] GeV
[-0.8,0.8]

TABLE L. A list of all priors used (see Sec. III for the definitions of the model parameters). All prior distributions are assumed to be uniform
and nonzero within the range quoted, and zero outside. The Table does not exhibit the step functions that ensure non-negativity of the shear

viscosity at all temperatures (see Eq. (25)).



Side note about priors

It is essential that the construction of the prior distribution
should not be informed by the same data that will be used in
performing parameter estimation. In particular, the posterior
of earlier analyses that used the same data sets should not in
any way be used as a prior for a new analysis: it would be an
attempt to use the same measurements twice, as well as being
likely inconsistent given differences in the models.

However: Using previously obtained posterior distribution is
appropriate when updating the existing analysis using new data
points



Viscous corrections at particlization
Grad (F = 1 F f):

foqifoai [MATE + Ap(u - P)?) + Agm A2 Po P

5 f_Grad

Chapman-Enskog (CE):

5f/mathrmCE _f [ I ((uP)]? P.AP ) WHVAZI/;’POC'D/B
i — leq,ileq,i

Bn T2 3(u-P)T 26,(u-P)T

Pratt-Torrieri-Bernhard (PTB):

-1

FPTB _ = VP12 + m? 1
= detB | TP T

with P; = B,-J-PJf, Bj=(1+ )\n)é;j% where \p is adjusted to
match the total pressure of the system



Experimental data

Pb+Pb at /syny = 2760 GeV:
» dNe,/dn, dET/dn, épt/pT in (0-70)% centrality
» dN/dy, (pr) for pions, kaons, protons in (0-70)% centrality
> v»{2} in (0-70)% centrality and v,{2} (n = 3,4) in (0-50)%
centrality

Total of 123 data points reduced to 10 principal components (98%
of total variance)

Au+Au at /syy = 200 GeV:

» dN/dy, (pr) for pions, kaons in (0-50)% centrality

» v,{2} (n=2,3) in (0-50)% centrality
Total of 29 data points reduced to 6 principal components (>98%
of total variance)

Emulator training points: 500



dNcn/dn , dN/dy, dEr/dn [GeV]
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Bayes factor

035 90% C.I. (Prior)
3 90% C.I. Grad

030 L= 90%C.I. CE
L. 90% C.I. PTB

i
JEVSERPE (),

Model A|[Model B[InB,, 5

Grad CE 82423
Grad PTB 1.4£25
PTB CE 6.8+£2.4

L
TABLE IV. A table of the logarithm of the Bayes factor In B4,
for each pair of viscous correction models and its integration un-
certainty for the Grad, Chapman-Enskog (CE) and Pratt-Torrieri-
Bernhard (PTB) viscous correction models.

015 020 025 030 035
T[Gev] TGeV]

FIG. 9. The 90 % credibility intervals for the prior (gray shaded area)
and for the posteriors (colored outlines) of the specific bulk (left)
and shear (right) viscosities, for three viscous correction models:
Grad (blue), Chapman-Enskog (CE, red) and Pratt-Torrieri-Bernhard
(PTB, green). The Pratt-Torrieri-McNelis (PTM) posterior is not
shown, but is nearly identical with the Chapman-Enskog result.

Other comparisons:

» Temperature dependent 1/s (A) vs. no T-dependence (B):
IHBA/B =-02+24

> Nonzero /s (A) vs. (1/s) =0 (B): InBa/g = 11.7+2.6



Example analysis: Trajectum

A transverse momentum differential global analysis of Heavy Ion Collisions

Govert Nijs,!»2'* Wilke van der Schee,® I Umut Giirsoy,?" ! and Raimond Snellings® 5§

! Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,
Utrecht University, 3584 CC Utrecht, The Netherlands
3 Theoretical Physics Department, CERN, CH-1211 Genéve 23, Switzerland
4Institute for Gravitational and Subatomic Physics (GRASP),

Utrecht University, 3584 CC Utrecht, The Netherlands
5 Nikhef, 1098 XG Amsterdam, The Netherlands

PRL 126, 202301 (2021), arxiv:2010.15130

Bayesian analysis of heavy ion collisions with the heavy ion computational framework
Trajectum

Govert Nijs,»"? Wilke van der Schee,® Umut Giirsoy,? and Raimond Snellings* °

L Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,
Utrecht University, 3584 CC Utrecht, The Netherlands
3 Theoretical Physics Department, CERN, CH-1211 Genéve 23, Switzerland
4 Nikhef, 1098 XG Amsterdam, The Netherlands
®Institute for Gravitational and Subatomic Physics (GRASP),

Utrecht University, 3584 CC Utrecht, The Netherlands

PRC 103, 054909 (2021), arxiv:2010.15134



Trajectum framework (21 parameters):
» Initial transverse energy density profile (x, y) from Trento
» Free streaming with effective velocity vg until 74

» 2+41d viscous hydrodynamics with temperature dependent
shear and bulk coefficients (1/s)(T) and ({/s)(T) with
additional variable transport coefficient ratios Tnd%sT /(,

TaST /N, Trn/Tr
» Hadron transport



Experimental data

Pb+Pb:
» dN.,/dn at 2.76 and 5.02 TeV
» dEr/dn, opt/pT at 2.76 TeV
» dN/dy, (pr), dN/dpt for pions, kaons, protons at 2.76 TeV
» v,{k} for 2.76 and 5.02 TeV
» v,(pr1) for pions, kaons, protons at 2.76 and 5.02 TeV
Total of 418 data points reduced to 25 principal components

p+Pb at 5.02 TeV:
» (p7), dN/dpT for pions, kaons, protons

> Up{k} = sgn(va{k}¥)|va{k}
Total of 96 data points reduced to 25 principal components



Emulator validation

(emulator/ model), Ngesign = 1000, Nyz = 200
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FIG. 1. Posterior distributions for all model parameters fitted to PbPb and pPb (solid) or PbPb only (dashed, not applicab

to pPb norm) data. Values indicate the expectation values with the 90% highest posterior density credible interval.
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