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Success of Bayesian approach
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• Uncertainty halved from previous work

• Corroborates eccentricity scaling of IP-Glasma and EKRT
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Shear viscosityShear viscosity

(η/s)(T) = (η/s)min + (η/s)slope(T − Tc) ×
� T
Tc

� (η/s)crv
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• Zero η/s excluded; min consistent with AdS/CFT

• Constant η/s excluded
• Best constrained T � 0.23GeV

• RHIC data could disambiguate slope and curvature
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Success of Bayesian approach

Bulk viscosityBulk viscosity

(ζ/s)(T) = (ζ/s)max
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Equation of state

of sound to 1=3 until higher energy densities and makes the
equation of state softer, can be compensated by higher
values of R, which sends the speed of sound higher just
above Tc and makes the equation of state stiffer. Fifty
values of X0 and R were then taken randomly from both the
prior, and weighted by the posterior likelihood. For each
case, the speed of sound is plotted as a function of the
temperature in Fig. (2). It is clear that the experimental
results significantly constrain the equation of state and we
also note that the RHIC and LHC data in combination
provide a better constraint than either can alone. It appears
that the speed of sound cannot fall much below the hadron
gas value, ∼0.15, for any extended range and that it must
rise with temperature. Figure 5 also shows a range of
equations of state from lattice calculations [4,5]. The
equations of state found here show a preference for being

slightly softer than those from the lattice, but the ranges
overlap.
Determining the equation of state from experiment has

proven difficult due to the intertwined links between model
parameters and numerous observables. The statistical
techniques applied here overcome these difficulties. The
resulting constraints suggest the speed of sound gradually
rises as a function of temperature from the hadron gas
value. The band of equations of state from Fig. 5 is
modestly softer than that of lattice calculations, but has
significant overlap. This analysis strengthens the supposi-
tion that the matter created in relativistic heavy ion
collisions has properties similar to that of equilibrated
matter according to lattice calculations and shows that our
model describes the dynamics of heavy ion collisions well
enough to permit the extraction the thermodynamic and
transport properties of equilibrium condensed QCD matter.

This work was supported by the National Science
Foundation’s Cyber-Enabled Discovery and Innovation
Program through Grant No. NSF-0941373 and by the
Department of Energy Office of Science through Grant
No. DE-FG02-03ER41259. The authors thank Ron Soltz
for providing the lattice data.
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FIG. 4 (color online). The posterior likelihood for the two
parameters that describe the equation of state, X0 and R, have a
preference to be along the diagonal. This shows that experiment
constrains some integrated measure of the overall stiffness of the
equation of state, i.e., a softer equation of state just above Tc is
consistent with the data if it is combined with a more rapid
stiffening at higher temperature.

FIG. 5 (color online). (a) Fifty equations of state were generated
by randomly choosing X0 and R in Eq. (2) from the prior
distribution and weighted by the posterior likelihood (b). The two
upper thick lines in each figure represent the range of lattice
equations of state shown in Refs. [4,5], and the lower thick line
shows the equation of state of a noninteracting hadron gas. This
suggests that the matter created in heavy-ion collisions at RHIC
and at the LHC has a pressure that is similar, or slightly softer, to
that expected from equilibrated matter.
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stiffening at higher temperature.
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Model parameters (input): ~x = (x1, ..., xn)
⇓

Model output ~y = (y1, ..., ym) ⇔ Experimental data ~y exp

We’d like to find the most probable parameter values ~x given ~y exp,
which is a conditional probability:

P(~x |~y exp) =
P(~x ∧ ~y exp)

P(~y exp)

Likewise the probability of the observation ~y exp on the condition of
~x is

P(~y exp|~x) =
P(~x ∧ ~y exp)

P(~x)

Combining the two conditions gives

P(~x |~y exp) =
P(~y exp|~x)P(~x)

P(~y exp)



Bayes’ theorem

Posterior probability ∝ Likelihood · Prior knowledge

P(~x |~y exp) = 1
EL(~y exp|~x)p(~x)

I P(~x |~y exp): Posterior probability of ~x on the condition of
observation ~y exp

I L(~y exp|~x): Likelihood of observation ~y exp for a given ~x
I p(~x): Prior probability of ~x before data comparison
I E =

∫
~x L(~y exp|~x)p(~x): Bayes evidence (normalization)



Likelihood function

Simple example: yk(x) = kx , determine linear coefficient k

Prior: k is between 0.1 and 1.5, uniform probability distribution
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Observation A: yA = 2.25± 0.45 at xA = 3.0
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Simplistic likelihood: L(k) = constant if
yA − σA < yk(xA) < yA + σA, 0 otherwise
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Add a more accurate observation B: yB = 2.6± 0.3 at xB = 4.0
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Problem: Product of step functions accounts only for the
intersection of the two measurements
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More typical choice for the likelihood:

L(k) = 1
N exp

(
−1

2

[
(yk (xA)−yA)2

σ2
A

+ (yk (xB)−yB)2

σ2
B

])
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Dashed lines: 5th and 95th percentiles, demarcating the 90%
credible interval. Solid line: 50th percentile, indicating the
median



Mahalanobis distance

We would like to generalize the likelihood function for arbitrary
dimensions.

This can be conveniently done using Mahalanobis distance

dM(~a, ~b) =

√
(~a− ~b)TΣ−1(~a− ~b).

where Σ is the covariance matrix containing the uncertainties (in
the previous example Σ = diag(σ2A, σ

2
B))

We can then define the likelihood as

L = 1√
|2πΣ|

exp
(
−d2

M
2

)
where the determinant |2πΣ| functions as a penalty factor for
estimates which have large uncertainties



Caveat of uniform prior probability

Uniform prior ⇒ Shape of posterior ∼ Likelihood (Data-driven
posterior)

However, while uniform priors are non-informative within the
defined interval, they become very informative at the edges!
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Conjugate prior
In cases where we can write our likelihood as a normal distribution
with a known, constant variance σ2

L(y) ∝ exp

[
− 1
2σ2

n∑
i=1

(yi − y)2

]
∝ exp

[
− n

2σ2
(〈y〉 − y)2

]
,

its conjugate prior is a normal distribution

p(y) ∝ exp

[
− 1
2σ2p

(y − µp)2
]
.

This means the posterior distribution belongs to same distribution
family as the prior (i.e. normal):

P(y) ∝ exp

[
− 1
2σ2n

(y − µn)2
]

with σ2n = 1
nσ−2+σ−2

p
and µn = σ2n

(
〈y〉
σ2/n

+
µp
σ2
p

)
.



Prior: µp = 0.0, σp = 1.0,
measurement (likelihood):
〈y〉 = 1.0, σ = 1.0
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Bayes factor

The evidence E =
∫
~x L(~y exp|~x)p(~x) can usually be ignored when

determining best-fit parameters for a model, as we’re most
interested in ratios of likelihood

It can, however, be used to compare the credibility of two
competing models MA and MB :

Bayes factor B12 = EA
EB

p(MA)
p(MB)

BAB � 1⇒ model A preferred over model B. If we have no prior
preference, p(MA) = p(MB) and the Bayes factor is simply the
ratio of evidences:

BAB = EA
EB =

∫
~xA
LA(~y exp| ~xA)pA( ~xA)∫

~xB
L2(~y exp| ~xB)pB( ~xB)



Example: 1-parameter model M1 : y = kx
vs. 2-parameter model M2 : y = kxn

Bayes factor B12 ≈ 0.8⇒ No significant preference
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Example: Measurement (likelihood): 〈y〉 = 1.0, σ = 1.0
Model A prior: µA = 0.0, σA = 1.0
Model B prior: µB = 0.0, σB = 0.5
Model C prior: µC = 1.0, σC = 0.5
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Often in practical applications with several model parameters, the
exact expression for posterior probability distribution becomes
difficult to obtain

⇒ Use Markov chain Monte Carlo method to sample the
posterior



Monte Carlo sampling of x from a distribution f (x):
I Pick a random value xr from the uniform range [xmin, xmax]

I Pick a random value fr from the uniform range [fmin, fmax]

I If f (xr ) ≥ fr , accept xr
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... What if we don’t know the exact expression for f ?



Markov Chain Monte Carlo

Stochastic process (discrete time): Indexed collection of random
variables {R(ti )}Ni=1 ≡ {Ri}Ni=1

Markov chain: A stochastic process where the future states depend
only on the present state (Markov property or "memorylessness")

p[Rn+1 = r |R1 = r1, ...,Rn = rn] = p[Rn+1|Rn = rn]

Examples:
I Discrete time: 1-d random walk starting at 0 with possible

steps -1 and 1
I Continuous time: Brownian motion



The goal: Generate samples xi → xi+1 such that the distribution of
samples d(x) = m(x)/n (m(x) being the number of samples in a
region around x) converges to the posterior distribution P(x) as
n→∞

To ensure convergence, we require detailed balance (reversibility)

p(xi → xi+1)P(xi ) = p(xi+1 → xi )P(xi+1)⇒ p(xi→xi+1)
p(xi+1→xi )

= P(xi+1)
P(xi )

We decompose the transition probability p(xi → xi+1) to a
proposal distribution Q and acceptance probability A:

p(xi → xi+1) = Q(xi → xi+1)A(xi → xi+1)

For A to satisfy detailed balance, we must have

A(xi→xi+1)
A(xi+1→xi )

= P(xi+1)
P(xi )

Q(xi+1→xi )
Q(xi→xi+1)



Metropolis-Hastings algorithm:
Metropolis acceptance criterion

A(xi → xi+1) ≡ min
{
1, P(xi+1)

P(xi )
Q(xi+1→xi )
Q(xi→xi+1)

}
1. Draw a proposal for xi → x ′i+1 from Q

2. Compute acceptance probability A(xi → x ′i+1)

3. Pick a random number r from uniform range [0, 1]

4. If A(xi → x ′i+1) > r , accept the proposed move and set
xi+1 = x ′i+1. Otherwise set xi+1 = xi

5. Set i = i + 1 and repeat the process



Example: 1-parameter model with step proposals from the normal
distribution

Q(k ′, k0) = 1√
2πσq

e−(k ′−k0)2/(2σ2
q ),

A(k0 → k ′) = min
{
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Q(k ′,k0)

}
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MCMC has a "burn-in" period that depends on the initialisation of
the chain and the proposal distribution Q — plot the trace (chain
values vs time) to estimate the number of steps to discard from the
start of the chain

Any given sample ki will be correlated with the previous sample ki−1
and the following sample ki+1, and the strength of the correlation
depends on the acceptance probability A (rejecting the proposed
new position means ki and ki+1 will be maximally correlated).
These correlations reduce the sampling quality of MCMC



Ways to quantify chain quality:

Acceptance fraction fa = N(accepted)
N(proposed) .

I fa � 1: Strong correlations, poor sampling quality
I fa ≈ 1: Distribution of samples is Q instead of P
I Rule of thumb: 0.2 < fa < 0.5

Autocorrelation time
I Autocovariance function with respect to lag T for a chain of

M samples: C (T ) ≈ 1
M−T

∑M−T
n=1 (xT+n − 〈x〉)(xn − 〈x〉)

I Autocorrelation time τc = 1 + 2
∑Mc

T=1
C(T )
C(0)

where Mc = min {m > Kτc(m)}m<M for a constant K ≈ 5



Parallel tempering

If the posterior distribution has multiple peaks, using parallel
tempered MCMC (PTMCMC) might provide better results (at the
cost of computation time)

As the name suggests, PTMCMC runs several chains in parallel,
each chain sampling a different modified posterior defined by
inverse temperature β = 1/T ("thermal noise"):

Pβ(~x |~y exp) = [L(~y exp|~x)]βp(~x)

Two chains swap walker positions at pre-determined intervals with
probability

Ai ,j = min

{(
L(xi )
L(xj )

)βj−βi
, 1
}

β → 0 (T →∞)⇒ Pβ → p
β → 1 (T → 1)⇒ Pβ → P



We can obtain the full integral over the parameter space (i.e. the
evidence E) using parallel tempered MCMC and thermodynamic
integration

Let’s redefine the evidence as a function of inverse temperature β:

E(β) =
∫
~x [L(~y exp|~x)]βp(~x) ≡

∫
~x Lβ(~x)p(~x)

This satisfies the differential equation

d(log E)
dβ = 1

E(β)

∫
~x log[L(~x)Lβ(~x)]p(~x) ≡ 〈logL〉β

Integrating over β gives the evidence estimate:

log E(1) =
∫ 1
0 dβ 〈logL〉β



Gaussian process

Markov chain Monte Carlo requires a large number of model
evaluations for the likelihood function.

However, it can take hundreds of CPU hours to simulate a heavy
ion collision event.

⇒ Need a method for producing quick approximations for the given
model parameter values
⇒ Model emulation using Gaussian processes

Reminder: stochastic process in discrete time: Indexed collection of
random variables {R(ti )}Ni=1.



Gaussian process: A stochastic process, in which every finite set
{Yi}Ni=1 is a multivariate Gaussian (or "normal") random variable
N (µ,Σ), where

µ = {µ1, ..., µN}
is the mean and

Σ =

 v(1, 1) · · · v(1,N)
...

. . .
...

v(N, 1) · · · v(N,N)


is the covariance matrix. The covariance function (or "kernel")
v(i , j) is symmetric (v(i , j) = v(j , i)) and positive semidefinite
(v(i , j) ≥ 0).



Gaussian process examples
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Gaussian process examples
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Gaussian process examples
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Multivariate normal random variables

Multivariate normal random variables have the following important
property:

Let A ∼ N (µ,Σ) be a n-dimensional normal random vector. If
B = c + TA is an affine transformation with m-dimensional vector
c and a constant m × n-dimensional matrix T , then
B ∼ N (c + Tµ,TΣTT ).



Let’s denote a joint distribution for normal random vectors A and B
as

J =

(
A
B

)
∼ N

((
µA
µB

)
,

(
ΣA ΣAB

ΣBA ΣB

))
Let us then define a transformation matrix T (assuming Σ−1B
exists!)

T =

(
I −ΣABΣ−1B
0 I

)
Now the affine transformation J ′ = T (J − µJ) is also a joint
normal distribution:

J ′ =

(
A′

B ′

)
=

(
A− µA − ΣABΣ−1B (B − µB)

B − µB

)
∼N

((
0
0

)
,

(
ΣA − ΣABΣ−1B ΣBA 0

0 ΣB

))



(
A′

B ′

)
∼ N

((
0
0

)
,

(
ΣA − ΣABΣ−1B ΣBA 0

0 ΣB

))
A′ and B ′ are jointly normal and uncorrelated ⇒ A′ is independent
of B ′

⇒ A′ is independent of B
⇒ Conditional probability distribution of A′ with fixed B = b0:

A′|B=b0 ∼ N (0,ΣA − ΣABΣ−1B ΣBA)

A = A′ + µA + ΣABΣ−1B (b0 − µB), where µA + ΣABΣ−1B (b0 − µB)
is a constant

⇒ A|B=b0 ∼ N (µA + ΣABΣ−1B (b0 − µB),ΣA − ΣABΣ−1B ΣBA)



To summarise: if A and B have the joint probability(
A
B

)
∼ N

((
µA
µB

)
,

(
ΣA ΣAB

ΣBA ΣB

))
then A has a conditional mean

A|B=b0 = µA + ΣABΣ−1B (b0 − µB)

and conditional covariance

vA|B=b0 = ΣA − ΣABΣ−1B ΣBA

for a fixed B = b0.

If we have a function f with a set of known values Y = {f (xi )}Ni=1,
we can use this result for predicting function values at other points
x ′ with the associated uncertainty!



Gaussian process regression
The problem: We need to know the covariance matrix for the given
data Y .

Typical choice for the covariance function: squared-exponential with
variable amplitude θA, correlation length θL and a noise term θnoise:

v(x , x ′) = θA exp

(
−(x − x ′)2

2θ2L

)
+ θnoiseδxx ′

The hyperparameters ~θ = (θA, θL, θnoise) are not known a priori and
have to be estimated from the model data Y by maximising the
log-likelihood

logP(Y |~θ) = −1
2
Y TΣ−1Y (~θ)Y︸ ︷︷ ︸
data fit

−1
2

log |ΣY (~θ)|︸ ︷︷ ︸
complexity penalty

−N

2
log(2π)︸ ︷︷ ︸

normalization

This is known as emulator training.



1-D example
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1-D example
Effect of the mean function
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1-D example

0 2 4
1.0

0.5

0.0

0.5

f(x) = axsin(bx)

0 2 4
x

1.0

0.5

0.0

0.5

y

(x) 0.0, training points: 5

A=0.08 L=0.02

0 2 4
x

1.0

0.5

0.0

0.5

y

(x) 0.0, training points: 10

A=0.93 L=0.75

0 2 4
x

1.0

0.5

0.0

0.5

y

(x) 0.0, periodic kernel

A=0.09 L=0.78 P=1.8



Let the set of known function values be Y = {f (xi )}Ni=1 and the
prediction point be ŷ = f (x̂).
I Since the point x̂ is correlated with all data points {xi}Ni=1, the

ordering of points xi (i.e. the indexing) in the set Y does not
matter

I xi and x̂ can be vectors with arbitrary many dimensions. The
squared-exponential covariance function can be generalized to
M dimensions by introducing a new correlation length for each
dimension:

v(x̂ , xi ) = θA exp

(
−

M∑
k=1

(x̂k − (xi )k)2

2(θL)2k

)
+ θnoiseδx̂xi

⇒ Gaussian process regression is immediately applicable for a
parameter space with arbitrary many dimensions!



Training data selection

As the GP prediction variance increases quickly in the absence of
nearby conditioning points, the points in the dataset {(xi , f (xi ))}
should be evenly distributed over the investigated parameter space.

Most straightforward solution: A grid over the parameter space.
However, the number of points required increases quickly with
higher dimensions

More economical solution: Latin hypercube sampling
I For N samples, partition the parameter range into N

equal-probability intervals
I Sample parameter values within the intervals, optionally

maximising the minimum distance between samples (by
iteration)

I Rule of thumb: At least 10 samples per dimension



Emulator validation

We want to use Gaussian processes as surrogate models or
"emulators" which can provide quick estimates for model output
with quantified uncertainty. In such cases we rarely can compare
the GP predictions to analytical results.

How can we assure ourselves that the emulator is working correctly?

Two sets of data are needed:
I Training set used for conditioning and tuning the GP emulator
I Validation set, consisting of points which are not in the

training set



For a small number of samples (O(10)), we can try to assess the
emulator quality simply by plotting the validation set predictions
against the true values from the model

If we have a larger number of samples (O(100)), we can plot the
z-scores:

zi =
yi − ŷi√

vi
.

Since the emulator prediction consists of conditional mean ŷ and
variance v , we expect the distribution of z-scores to approach the
normal distribution N (0, 1) as the sample size increases
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While Gaussian processes are able to handle multidimensional input
parameter spaces ~x , the prediction ŷ(~x) is always a scalar

m observables ⇒ m Gaussian processes needed for model
emulation. However, in heavy ion collisions with multiple different
particle types and centrality classes, m can be up to O(100)

As the calculation of emulator predictions involves potentially
high-dimensional matrix multiplication, the computational costs can
become notable



Principal component analysis
Let’s represent the model output with a n x m matrix M, where n is
the number of simulation points and m the number of observables

In preparation for the principal component analysis, we need to
normalize the data columns (either with their sample standard
deviations or with the corresponding experimental values) to obtain
dimensionless quantities of similar scale, and center by subtracting
the mean of each observable from the elements of each column

Note: PCA assumes that variance is a good measure of the spread
of data. If this is not the case (if the data is skewed, for example),
further transformation methods are needed, such as Box-Cox
transformation

y ′ =

{
yλ−1
λ forλ 6= 0

log(y) forλ = 0



We want to find an eigenvalue decomposition of the m x m
covariance matrix MTM:

MTM = VΛV T ,

where Λ is the diagonal matrix containing the eigenvalues λ1, ..., λm
and V is an orthogonal matrix containing the eigenvectors. This
decomposition is found by factorising M via
singular value decomposition:

M = USV T

I n x n orthogonal matrix U contains the left-singular vectors of
M, which are eigenvectors of MMT

I n x m rectangular diagonal matrix S contains the singular
values of M (square roots of MTM eigenvalues)

I m x m orthogonal matrix V contains the right-singular vectors
of M (eigenvectors of MTM) — these are the
principal components (PCs)



Principal component space is rotated and stretched in the direction
of the first principal component(s). First principal component
represents the direction of largest variance in the output space,
second PC the direction of second largest variance, etc.
I Fraction of variance explained by principal component pq:

Var(pq) =
λq
m∑
i=1

λi

I Select the number of principal components which together
explain desired fraction of total variance; often only a few PCs
are needed to explain 99% of the variance



The transformation of a vector ~y from observable space to a vector
~z in the reduced-dimension principal component space is

~z = ~y Vk ,

while for matrices (such as the covariance matrix) the
transformation is

Σz = V T
k Σy Vk .

To compare an emulator prediction ~z GP against physical
observables, we use the inverse transformation

~y GP = ~z GP V T
k .



Likelihood function with GP and PCA

1
|2π(Σ exp + ΣGP)| exp

(
−1
2

(~z∗GP − ~z exp)(Σ exp + ΣGP)−1(~z∗GP − ~z exp)T
)

I ~z∗GP is the emulator prediction at the input parameter point ~x∗

I ~z exp is the experimental data transformed to principal
component space

I ΣGP is the predictive variance (emulator uncertainty)
I Σ exp is the experimental error squared, transformed to PC

space



Example: Model output M consisting of two column vectors m1
and m2 sampled from a bivariate normal distribution (number of
samples n = 100)
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Example: Model output M consisting of 10 column vectors m1 ...
m10 sampled from a multivariate normal distribution (number of
samples n = 200)

(
m1 · · · m10

)
∼ N

(0 · · · 0
)
,

 v1,1 · · · v1,10
...

. . .
...

v10,1 · · · v10,10




where vi ,i = 10 · 0.5(i−1) and vi ,j = vi ,ivj ,j · 0.5|i−j | (i 6= j)

Variance fractions for first 6 PCs: 0.583, 0.359, 0.0327, 0.00832,
0.00729, 0.00496 (≥ 99.5% of total variance)

Average transformation error with dimension reduced to 6
(ỹi = (yiV6)V T

6 )

1
n

n∑
i=1

√
(ỹi − yi )2

|yi |
≈ 9%



Closure testing

The final check before performing calibration to experimental data
is closure testing, i.e. using pre-calculated model data (such as the
validation data) as target value. This checks
I if the posterior probability distribution peaks at the original

known parameter values (how credible is the analysis result)
I how wide is the distribution (how constraining is the dataset

used in the analysis)



Example

Three-parameter model y(x ; a, b, c) = ax − bx2 + cx3 calibration
to measured values y0 at x0 = (0.5, 1.5, 2.5, 3.5) with 5% errors
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Let’s assume uniform prior distributions with ranges a ∈ [0.0, 10.0],
b ∈ [0.0, 5.0], c ∈ [0.0, 1.0]. We sample 30 training points and 10
validation points from this cuboid.
4 measurements ⇒ 4 GP emulators. GP emulator kernels shall be
squared-exponentials with 3 correlation lengths
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Closure test on GP + MCMC calibration using validation point 1
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Closure test on GP + MCMC calibration using validation point 5
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Calibration on measurements
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Analysis procedure

Choose prior distribution and target observables
⇓

Produce training data for emulator conditioning
⇓

Determine required number of Gaussian processes with PCA
⇓

Condition the emulators on training data and validate with separate
data
⇓

Closure testing
⇓

Calibrate on experimental data



Example analysis: η/s sensitivity to EoS

PRC 102, 044911 (2020), arxiv:2006.12499



Baseline EoS: P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010)

I s95p: M < 2 GeV hadron gas particles from 2004 PDG summary tables,

lattice data used for fitting: Phys. Rev. D 80, 014504 (2009); Phys. Rev. D 77, 014511

(2008)

New parametrizations: J. Auvinen, K. J. Eskola, P. Huovinen, H. Niemi, R. Paatelainen,

P. Petreczky,
PRC 102, 044911 (2020) [arXiv:2006.12499 [nucl-th]]

I s83s18: HG: 2018 PDG summary, lattice: stout action PLB 730, 99 (2014)

I s87h04: HG: 2004 PDG, lattice: HISQ PRD 90, 094503 (2014), PRD 97, 014510 (2018)

I s88h18: HG: 2018 PDG, lattice: HISQ PRD 90, 094503 (2014), PRD 97, 014510 (2018)
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EKRT+hydrodynamics model

I Initial energy density from the EKRT minijet saturation model
Paatelainen et al., Phys. Rev. C 87, no. 4, 044904 (2013); Phys. Lett. B 731, 126 (2014)

e(~rT , τs(~rT )) = Ksat
π [psat(~rT ,Ksat)]4; τs(~rT ) = 1/psat(~rT ,Ksat)

For each centrality class, produce a number of energy density
profiles, convert to entropy density via EoS, and average over
events

I 2+1D viscous hydrodynamics with piecewise linear
temperature dependence on shear viscosity coefficent η/s Niemi

et al., PRC 93, 024907 (2016)

(η/s)(T ) = SHG(TH − T ) + (η/s)min,T < TH
(η/s)(T ) = (η/s)min,TH ≤ T ≤ TH + Wmin

(η/s)(T ) = SQGP(T−TH−Wmin)+(η/s)min,T > TH+Wmin

I Kinetic decoupling temperature Tdec and chemical freeze-out
temperature Tchem are also free parameters



Bayesian analysis

Model parameters (input): ~x = (x1, ..., xn)
(Ksat, (η/s)min, TH, Wmin SHG, SQGP, Tdec, Tchem )

⇓
Model output ~y = (y1, ..., ym) ⇔ Experimental values ~y exp

I charged particle multiplicity at midrapidity, dNch/dη and
4-particle cumulant pT -averaged elliptic flow, v2{4}, in
Au+Au collisions at

√
sNN = 200 GeV and Pb+Pb collisions at√

sNN = 2.76 and
√
sNN = 5.02 TeV

I Identified particle multiplicity dNi/dy , and average transverse
momenta 〈pT 〉i , of pions (π+), kaons (K+) and protons (p) in
Au+Au collisions at

√
sNN = 200 GeV and in Pb+Pb collisions

at
√
sNN = 2.76 TeV

Centralities: (10–20)%, (20–30)%, (30–40)%, (40–50)% and
(50–60)%.



Bayesian analysis

90 observables ⇒ Reduce to 6 principal components for GP
emulation
GP training with 170 points, validation with 30 points
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Posterior probability

s88h18
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Observables at
√
sNN = 200 GeV

Charged particle yield Elliptic flow v2{4}

10-20 20-30 30-40 40-50 50-60
Centrality [%]

0

100

200

300

400

500

600

d
N

ch
/d
η

Au+Au 200 GeV s83s18

s87h04

s88h18

s95p

PHENIX

10-20 20-30 30-40 40-50 50-60
Centrality [%]

0.00

0.02

0.04

0.06

0.08

v 2
{4
}

Au+Au 200 GeV

s83s18

s87h04

s88h18

s95p

STAR

Experimental data: STAR, PRC 79, 034909 (2009) Experimental data: STAR, PRC 72, 014904 (2005)



Observables at
√
sNN = 2.76 TeV

Charged particle yield Elliptic flow v2{4}
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Experimental data: ALICE PRL 106, 032301 (2011) Experimental data: ALICE PRL 116, 132302

(2016)



Observables at
√
sNN = 5.02 TeV

Charged particle yield Elliptic flow v2{4}
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EoS posterior distribution comparisons
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I "Nuisance" parameters (= not
directly related to (η/s)(T ))
quite well constrained

I Not much difference between
EoSs
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Posterior (η/s)(T )
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I Tightest constraints on η/s in the temperature range
T ≈ 150–220 MeV, where η/s is approximately constant

I All EoSs: 0.08 < η/s < 0.23
I s83s18 and s88h18: 0.12 < η/s < 0.23
I Differences between equations of state within uncertainties



Example analysis: JETSCAPE transport coefficients

PRC 103, 054904 (2021), arxiv:2011.01430



JETSCAPE multistage model (18 parameters):
I Initial transverse energy density profile ε̄(x , y) from Trento

I Free streaming until τfs(τR , α) = τR

(
〈ε̄〉

4.0GeV/fm3

)α
I 2+1d viscous hydrodynamics with both shear and bulk viscous

effects
I Hadron transport



Side note about priors

However: Using previously obtained posterior distribution is
appropriate when updating the existing analysis using new data
points



Viscous corrections at particlization
Grad (f̃ = 1∓ f ):

δf Grad
i = feq,i f̃eq,i

[
Π(ATm

2
i + AE (u · P)2) + Aππ

µν∆αβ
µνPαPβ

]
Chapman-Enskog (CE):

δf
/mathrmCE
i = feq,i f̃eq,i

[
Π

βΠ

(
(u · P)F

T 2 − P ·∆P

3(u · P)T

)
+
πµν∆µν

αβP
αPβ

2βπ(u · P)T

]

Pratt-Torrieri-Bernhard (PTB):

f PTB =
ZΠ

detB

[
exp

(√
|P ′|2 + m2

T

)
± 1

]−1
with Pi = BijP

′
j , Bij = (1 + λΠ)δij

πij
2βπ where λΠ is adjusted to

match the total pressure of the system



Experimental data

Pb+Pb at
√
sNN = 2760 GeV:

I dNch/dη, dET/dη, δpT/pT in (0-70)% centrality
I dN/dy , 〈pT 〉 for pions, kaons, protons in (0-70)% centrality
I v2{2} in (0-70)% centrality and vn{2} (n = 3, 4) in (0-50)%

centrality
Total of 123 data points reduced to 10 principal components (98%
of total variance)

Au+Au at
√
sNN = 200 GeV:

I dN/dy , 〈pT 〉 for pions, kaons in (0-50)% centrality
I vn{2} (n = 2, 3) in (0-50)% centrality

Total of 29 data points reduced to 6 principal components (>98%
of total variance)

Emulator training points: 500





Bayes factor

Other comparisons:
I Temperature dependent η/s (A) vs. no T -dependence (B):

lnBA/B = −0.2± 2.4
I Nonzero η/s (A) vs. (η/s) ≡ 0 (B): lnBA/B = 11.7± 2.6



Example analysis: Trajectum

PRL 126, 202301 (2021), arxiv:2010.15130

PRC 103, 054909 (2021), arxiv:2010.15134



Trajectum framework (21 parameters):
I Initial transverse energy density profile ε̄(x , y) from Trento
I Free streaming with effective velocity vfs until τfs
I 2+1d viscous hydrodynamics with temperature dependent

shear and bulk coefficients (η/s)(T ) and (ζ/s)(T ) with
additional variable transport coefficient ratios τΠδ

2sT/ζ,
τπsT/η, τππ/τπ

I Hadron transport



Experimental data

Pb+Pb:
I dNch/dη at 2.76 and 5.02 TeV
I dET/dη, δpT/pT at 2.76 TeV
I dN/dy , 〈pT 〉, dN/dpT for pions, kaons, protons at 2.76 TeV
I vn{k} for 2.76 and 5.02 TeV
I vn(pT ) for pions, kaons, protons at 2.76 and 5.02 TeV

Total of 418 data points reduced to 25 principal components

p+Pb at 5.02 TeV:
I 〈pT 〉, dN/dpT for pions, kaons, protons
I v̄n{k} = sgn(vn{k}k)|vn{k}|

Total of 96 data points reduced to 25 principal components



Emulator validation
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