
SOKENDAI D1 : Shunsuke Sasaki 
Supervisor : Tomoya Takiwaki 

Brainstorming workshop 2022

Phenomenological turbulent 
effects of core-collapse 
supernovae
 Toward to predict progenitor dependence  

1



Contents 
Introduction  

Explosion mechanism 

Turbulent effects in CCSNe 

1D+ simulation 

Motivation  

Phenomenological simulation : 1D+ 

Govering equations and turbulent parameters 

Results : progenitor dependence  

              turbulent effects  

Analysis of turbulence with 3D simulation 

Summary 2



 Energy exchange and mechanism
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CCSN simulation calculates these 
energy exchanges and dynamics.
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 Stellar evolution and Supernovae 
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Supernova Success ?  Failure? (Explodability)

Neutron star or Black hole ?

What is important property to predict the progenitor dependence ?



1D simulation
Systematic study

1D： phenomenological simulation 

Prediction :  property of progenitor like    governs  supernova explosion ξM

 :　Black hole (black)　 

 :　Supernova (Red)

ξM ↑

ξM ↓

Compactness:   ξM =
M/M⊙

R(M)/1000km

M(r) = ∫
r

0
4π ρ r′ 

2 dr′ 
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O’Connor & Ott 2011 
Ertl et al. 2016 

Nakamura et al. 2015
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3D simulation

1D prediction is Not consistent with latest results of 3D 

One of the reasons : multi dimensional turbulent effects

Compactness:   ξM =
M/M⊙

R(M)/1000km

Burrows et al. 2020



Research of turbulence
Turbulent convection in gain region

Turbulence depends on 
resolution, initial perturbations 

Analyzing and understanding  
convection with multi- D 
simulation are difficult  

Radice et al. 2016
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Analysis of Turbulence

non-linear analysis of turbulent effects is 
important to understand the mechanism. 

Density perturbation triggers turbulence. 

Kazeroni et al. 20182D            3D
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Turbulent effects
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Neutrino heating

Shock

Energy transportAccretionr Main turbulent effects 

(1) Turbulent Pressure　
 

(2) Diffusion   

(3) Dissipation 

Pturb = ⟨ρ′ v′ v′ ⟩

⟨e′ v′ ⟩

·edis = ρv′ 
3/L



Gravity
Neutrino 
transport

Dimensionality (for Hydro)

Approximate 
transport

Full GR
Newtonian

3D
2D
1D

Full Boltzmann

Our Goal 
Accuracy : 3D ＝ 1D+  
Resource：3D >> 1D+ 

Performance of self- 
consistent simulation



1D+ simulation

1D+ is low computational cost. 
It is able to calculate neutrino heating and turbulent effects 
           and to predict the progenitor dependence of CCSNe 11

Sasaki & Takiwaki

Main turbulent effects are 
introduced self consistent 1D 
simulation 

(1) Turbulent Pressure　
 

(2) Diffusion   

(3) Dissipation 

Pturb = ⟨ρ′ v′ v′ ⟩

⟨e′ v′ ⟩

·edis = ρv′ 
3/L



Motivation

12
1st step:  researching turbulent effects in current 1D+ 

It needs to reproduce the 3D results with 1D+

Motivation：to predict progenitor dependence by using 1D+ 
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How to introduce turbulent effects
Fluid equations: from 3D to1D

 

  Assuming spherical symmetry in the above three equations

∂ρ
∂t

+ ∇ ⋅ [ρ ⃗v ] = 0 mass conservation

∂ρ ⃗v
∂t

+ ∇ ⋅ [ρ ⃗v 2 + P] = − ρg + Sν Euler equation

∂(ρe)
∂t

+ ∇ ⋅ [ ⃗v (ρe + P)] = − ρ ⃗v g + Qν Energy conservation
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How to introduce turbulent effects
Reynolds decomposition (Murphy & Meakin 2011)
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Reynolds decomposition 

 

 

A = ̂A + A′ 

̂A = ⟨A⟩ =
1

4π ∫ A(r, θ, φ) dΩ

⟨A′ ⟩ = 0

 

 

 

∂ρ
∂t

+ ∇ ⋅ [ρ ⃗v ] = 0

∂( ̂ρ + ρ′ )
∂t

+ ∇ ⋅ [( ̂ρ + ρ′ )( ̂ ⃗v + ⃗v ′ )] = 0

∂⟨ ̂ρ + ρ′ ⟩
∂t

+
1
r2

∂
∂r

r2⟨( ̂ρ + ρ′ )( ̂vr + v′ r)⟩ = 0

∂ ̂ρ
∂t

+
1
r2

∂
∂r

r2[ ̂ρ ̂vr + ⟨ρ′ v′ r⟩] = 0

Phenomenological turbulent effect
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ρ(r), P(r) . . .

Model： Mixing Length Theory
r

Element is powered  
by buoyancy force 

ρ, P . . .

Λmixg

Scale of turbulence:  
Turbulent velocity: 

Λmix

vturb

vturb

vr



Governing equation  (e.g. Müller 2019, 
Couch et al. 2020)

Turbulent pressure

Diffusion 

Dissipation
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Mixing length parameters Diffusion parameters

Du = αuvturbΛmix (u = ϵ, Ye, K)

Source of turbulence

Λmix = αΛHP = αΛ
P
ρg

mixing length

∂ρ
∂t

+
1
r2

∂
∂r

r2[ρvr] = 0 Mass conservation

∂ρvr

∂t
+

1
r2

∂
∂r

[r2(ρv2
r + P + ρv2

turb)] = − ρg + Sν Euler equation

∂(ρe)
∂t

+
1
r2

∂
∂r

[r2vr(ρe + P + ρv2
turb) − r2ρDϵ ( ∂ϵ

∂r
+ P

∂
∂r ( 1

ρ ))−r2ρDK ∇v2
turb] = − ρvrg + ρvturbω2

BVΛmix + Qν Energy conservation

∂ρv2
turb

∂t
+

1
r2

∂
∂r

[r2(ρv2
turbvr) − r2ρDK ∇v2

turb] = − ρv2
turb

1
r2

∂(r2vr)
∂r

+ ρvturbω2
BVΛmix − ρ

v3
turb

Λmix
Turbulent energy conservation
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potential
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energy
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Explodability　                       αΛ

Progenitor：  

     total  8x17=136 models 

 is difficult to explode.( Vartanyan et 
al.2018) 

 is easy to explode.(Couch et 
al.2020)

9.6,12,15,20,25,30,35,40 M⊙

αΛ = 0.8 − 1.2

12 M⊙

25 M⊙
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success, failure

Mixing length　parameters

Λmix = αΛHP = αΛ
P
ρg

mixing length



Turbulent parameter dependence
Explosion energy
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Progenitor:  

 

Failure to explode :  ,  

              

12,15,20,25,30,35,40 M⊙

Eexp (tb = 0.5)

Eexp = 0

αΛ ↑ ⇒ Eexp ↑

Turbulent parameter governs the progenitor dependence of Eexp



PNS mass　( baryonic mass)
Turbulent parameter dependence
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Progenitor :  

 at  

             

12,15,20,25,30,35,40 M⊙

MPNS tb = 0.5

αΛ ↑ ⇒ MPNS ↓



compactness 

Compactness :  

Progenitor :

ξM =
M/M⊙

R/1000km

12,15,20,25,30,35,40 M⊙
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Dependence of compactness
Explosion energy
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Progenitor:  

 

Failure to explode :  ,  

             

12,15,20,25,30,35,40 M⊙

Eexp (tb = 0.5)

Eexp = 0

Turbulent parameter governs the compactness dependence of Eexp



Dependence of compactness
PNS mass　( baryonic mass)
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Progenitor :  

 at  

            

12,15,20,25,30,35,40 M⊙

MPNS tb = 0.5



Summary of progenitor dependence

Explodability depends on turbulent parameter . 

 Strong turbulence , which means large  , trigger  strong explosion. 

Focusing on  , 

Compactness dependence of  is effected by turbulence parameter, . 

Compact dependence of   is not effected by turbulence parameter, . 

  

αΛ

αΛ

ξM

Eexp αΛ

MPNS αΛ
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Results
Evolution of Shock 

1D+ has some tasks to 
reproduce 3D results accurately. 

One is fitting the shock 
propagation. 

In our 1D+, turbulent parameter 
effects prompt convection. 

27



Results
Turbulent velocity

Turbulent velocity of 2D; 

 

Turbulent velocity of 1D+ is 
larger than that of 2D.

Rrr + Rθθ

Rrr = v′ rv′ r = (vr − < vr > )(vr − < vr > )
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Results
Source terms of turbulent energy in gain region

Source term of turbulent 
energy eq. :  

 

In our 1D+, dissipation term, 
, is large because of prompto 

convection. 

Sturb = ρvturbω2
BVΛmix, ϵdis = | − ρ

v3
turb

Λmix
|

ϵdis

29
10ms s12a12p05

∂ρv2
turb

∂t
. . . . = − ρv2

turb
1
r2

∂(r2vr)
∂r

+ ρvturbω2
BVΛmix − ρ

v3
turb

Λmix



Discussion of turbulent effects 

Phenomenological turbulent model of 1D+ is simple 
model. This is based on Mixing Length Theory(MLT). 

However, turbulence of 3D depends on wave 
number. ( In our model, turbulence is evaluated by 
only one velocity,   ) 

Source of turbulent energy should be also 
corrected. 

vturb
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Kazeroni et al. 2018



Next work
Analyzing turbulent effects with 3D
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Next work
Analyzing turbulent effects with 3D
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Summary 

Motivation :predicting progenitor dependence 

Today’s talk :  turbulence effects of 1D+    

Results : turbulent parameter effects the progenitor dependence of   

              In our 1D+ model, 
  

Next steps are .. 

ξM
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Appendix 



 Energy source of CCSNe

35

Energy source of a supernova explosion is the gravitational energy  released by 
gravitational collapse. When a core of mass  collapses,  is   

 

 : initial (final) radius of core. (  ) 

 is exchanged to internal energy , neutrino energy and kinematic energy. (Look 
the slide of mechanism)

Eg

Mc Eg

Eg = (−
GM2

c

Ri ) − ( GM2
c

Rf ) ∼ ( GM2
c

Rf ) = 3 × 1053 ( Mc

M⊙ )
2

(
Rf

10km )
−1

[erg]

Ri, f Ri > > Rf

Eg



 Energy Exchange and mechanism
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CCSN simulation calculates these 
energy exchanges.

Convection

ν ν
ν

Accretion 

Heating

Gravitational 
potential

Kinematic energy

Internal energy

Turbulent energy

Neutrino
Core of massive star



Definition of Eexp, MNi, < Eν > , MPNS
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                           : Integral of non-binding region 

                                                         : mass fraction of nickel 

                                                       : neutrino luminosity 

 　,  

These properties are important to evaluate supernova mechanism.

Eexp = ∫D
ρϵ + ρv2/2 + eturb + ρΦ dV ∫D

dV

MNi = ∫D
̂ρX̂NidV X̂Ni

⟨Eν⟩tot = ∫
tb=0.5

tb=0
Lνdt Lν

MPNS = ∫
RPNS

0
4πr2ρdr RPNS = R(ρ = 1011 [g/cm3])



Appendix : calculation of    with 1D+fGW
Equation 3 in Sotani et al. 2021 

1D+  can evaluate PNS mass  and PNS radius   from density distribution. 

Finding the radius that is   →      

 Derive the GW frequency   from the following equation ( Sotani et al. 2021) 

 , 

MPNS RPNS

ρ = 1011 [g/cm3] RPNS MPNS = ∫
RPNS

0
4πr2ρdr

fGW

f [kHz] = − 1.410 − 0.443 ln(x) + 9.337x − 6.714x2 x ≡ ( MPNS

1.4M⊙ )
1/2

( RPNS

10 km )
−3/2



Total emitted neutrino energy
Comparison with Compactness
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     ⟨Eν⟩tot = ∫
tb=0.5

tb=0
Lνdt

The progenitor dependence of  tends to be similar to compactness.< Eν >tot



Total emitted neutrino energy
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Progenitor :  

 

             

12,15,20,25,30,35,40 M⊙

⟨Eν⟩tot = ∫
tb=0.5

tb=0
Lνdt

αΛ ↑ ⇒ ⟨Eν⟩tot ↓



Frequency of GW
Comparison with Compactness
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The progenitor dependence of  tends to be similar to compactness.fGW



Frequency of GW
Turbulent parameter dependence

42

Progenitor:  

 

              

12,15,20,25,30,35,40 M⊙

fGW (tb = 0.5)

αΛ ↑ ⇒ fGW ↓



Correlation study
Table of correlation coefficient
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The following is a test calculation of 
correlation coefficients



Correlation study
Correlation with Total neutrino energy

44
 has strongly positive correlation with .MPMS < Eν >tot



Correlation study
Correlation with Total neutrino energy
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and  are positively correlated with . 

But, these correlations depend turbulent parameter.

Eexp MNi < Eν >tot



Correlation study
Correlation with GW frequency
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 has strongly positive correlation with .MPMS fGW



Correlation study
Correlation with GW frequency
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and  are positively correlated with . 

But, these correlations depend turbulent parameter.

Eexp MNi fGW



Discussion
Compared to 3D

Our results of  is consistent to the result of 3D simulationαΛ = 1.0

Results of 2D (Vartanyan et al. 2018)
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Discussion
Compared explodability to Couch et al. 2020

Our feature is slightly different from previous work 

However, the landscape of explodability is similar. 

The result of Couch 2020
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Time dependence

the fitting formula of Gravitational wave (GW) 
by Sotani et al. 2021, 

 , 

 

All properties of CCSNe depends on time.   

Time dependence is also important factor 
for correlation study. 

-> time-domain astronomy

f(kHz) = − 1.410 − 0.443 ln(x) + 9.337x − 6.714x2

x ≡ ( MPNS

1.4M⊙ )
1/2

( RPNS

10 km )
−3/2
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 12 − 40Msun

αΛ = 1.0


