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Equation of State
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QCD Phase Diagram
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Fukushima-Hatsuda (2010); see also 50 Years of QCD Chap.7 (2023)
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QCD Phase Diagram
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QCD Phase Diagram
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Fukushima-Sasaki (2013)
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Crossover everywhere? 
Could be the case for NS
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Crossover to Quark Matter

7

Fujimoto-Fukushima-Weise (2019)
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Lesson from High-T
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 HRG Lattice pQCD

Rising p from small T is understood by a free gas of 
(thousands of) mesons (Hadron Resonance Gas).

Crossover = Duality Point

Pressure is “saturated” by the pQCD degrees of freedom.
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EoS Construction
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Nuclear EoS vs. pQCD EoS
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EoS Construction
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Nuclear EoS vs. pQCD EoS
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How the EoS jumps to 
the pQCD branch ?

1st-order PT cannot be 
excluded… but it must 
be weak at low density

or strong at irrelevantly high density…
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EoS Construction
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Nuclear EoS vs. pQCD EoS
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Or… smooth 
crossover?

pQCD branch 
is almost 
conformal.

c2
s ≃ 1/3



July 3, 2024 @ Wroclaw, Poland

EoS Construction

12

M

R

M

R

MC
Sampling

ML inference
MC Integration

Fujimoto-Fukushima-Kamata-Murase (2018-2024)
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EoS Construction
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Fujimoto-Fukushima-Kamata-Murase (2018-2024)
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EoS Construction
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Fujimoto-Fukushima-Kamata-Murase (2018-2024)
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Crossover vs. 1st-order PT
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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Crossover vs. 1st-order PT
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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Crossover vs. 1st-order PT
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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Crossover vs. 1st-order PT
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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Keep in mind
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Gravitational wave simulation has 
uncertainty other than EoS 
 —  resolution dependence 
       (mesh size ~ 100-300m), 
       mass ratio q of the binary system, 
       thermal effect (index), etc.
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Conformality
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2

dense NS matter in deep cores.
Here we propose the trace anomaly scaled by the en-

ergy density as a measure of conformality. The sound
velocity is expressed solely in terms of the normalized
trace anomaly, and in this sense the latter is a more in-
formative quantity than v2s . Here, we extract the trace
anomaly from the EoSs inferred from the NS data [44, 47–
49]. We discuss the conformal limits h⇥iT,µB ! 0 and
v2s ! 1/3, and clarify the di↵erence. We show that the
enhancement in the sound velocity is not in contradiction
with conformality. We then discuss the possibility that
the trace anomaly is positive definite at all densities. We
give a number of arguments for the positivity of the trace
anomaly and discuss implications for NS physics.

Trace anomaly at finite baryon density: Scale trans-
formations lead to the dilatation current j⌫D = xµTµ⌫

for which @⌫j⌫D = Tµ
µ = ⇥ [50]. For conformal theo-

ries ⇥ = 0 but in QCD both quark masses and the trace
anomaly explicitly break the scale invariance [51, 52]

⇥ =
�

2g
F a
µ⌫F

µ⌫
a + (1 + �m)

X

f

mf q̄fqf , (1)

where �/2g = �(11� 2Nf/3)↵s/8⇡+O(↵2
s) is the QCD

beta function and �m = 2↵s/⇡+O(↵2
s) is the anomalous

dimension of the quark mass.
At finite T and/or µB, the expectation value involves a

matter contribution as h⇥i = h⇥iT,µB + h⇥i0 where h⇥i0

represents the vacuum expectation value at T = µB = 0.
In this work we will focus on the matter contribution
only and yet it is customary to call h⇥iT,µB the trace
anomaly. The matter part of the trace anomaly satisfies
the following relation:

h⇥iT,µB = "� 3P . (2)

If thermal degrees of freedom are dominated by massless
particles as is the case in the high-T limit, the Stefan-
Boltzmann law is saturated and P ⇠ T 4 at high tem-
perature or P ⇠ µ4

B at high density, so that " = 3P .
Conversely, using thermodynamic relations, one can show
that h⇥iT,µB = 0 implies P / T 4 or P / µ4

B, respectively.
Thus, h⇥iT,µB is a probe for the thermodynamic contents
of matter.

The physical meaning of the trace anomaly is trans-
parent from the following relations:

h⇥iT,µB=0

T 4
= T

d⌫T
dT

,
h⇥iT=0,µB

µ4
B

= µB
d⌫µ
dµB

, (3)

where we quantify the e↵ective degrees freedom by ⌫T ⌘

P/T 4 and ⌫µ ⌘ P/µ4
B for hot matter at µB = 0 and dense

matter at T = 0, respectively. These imply that the
trace anomaly is proportional to the increasing rate of the
thermal degrees of freedom as the temperature/density
grows up.
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FIG. 1. Normalized trace anomaly read out from four inde-
pendent EoSs inferred from NS data; the blue solid line from
Ref. [44], the orange dashed line from Ref. [47], the green
dotted line from Ref. [48], and the red dot-dashed line from
Ref. [49]. We show two ab initio calculations (�EFT and
pQCD) and (a) and (b) are interpolations with 1� band by
the Gaussian process applied to di↵erent regions of NS data.

Here, we propose to use

� ⌘
h⇥iT,µB

3"
=

1

3
�

P

"
. (4)

as a measure of the trace anomaly [53]. The thermo-
dynamic stability and the causality require P > 0 and
P  ", respectively. Therefore �2/3  � < 1/3. In the
scale-invariant limit � ! 0.
We can decompose the sound velocity as

v2s =
dP

d"
= v2s, deriv + v2s, non-deriv , (5)

where the derivative and the non-derivative terms are
determined by �:

v2s, deriv ⌘ �
d�

d⌘
, v2s, non-deriv ⌘

1

3
�� . (6)

Here, ⌘ ⌘ ln("/"0) and "0 is the energy density at nu-
clear saturation density. We choose "0 = 150MeV/fm3

throughout this work. From these expressions it is evi-
dent that the restoration of conformality renders � ! 0
and d�/d⌘ ! 0, so that v2s ' v2s, non-deriv ! 1/3 in the
conformal limit at asymptotically high density.

Trace anomaly from the NS observations: In Fig. 1,
we show � extracted from various P (") constrained by
NS observables [44, 47–49]. The error band represents the
1� credible interval corresponding to the error in P (").
Since " is treated as an explanatory variable, the relative
error in �(") is assumed to be the same as that in P (").
For all these data � ⇠ 0 within the error at relatively

low energy density. Note that the red dash-dotted curve
in Fig. 1 follows from the analysis including pQCD as

Δ ∝ ε − 3p

∝
d

dμ ( p
μ4 )

Thermodynamic d.o.f.
Negative trace anomaly implies 
*decreasing* d.o.f. at higher density?

Fujimoto-Fukushima-Praszalowicz-McLerran (2022)
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Conformality
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Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Seems to 
go negative?

New data 
slightly 
pushes down.
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Conformality
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Brandes-Fukushima-Iida-Yu (2024)
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Conformality
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Brandes-Fukushima-Iida-Yu (2024)
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Fitting Formula
P
μ4

=
a
μ4

+
b
μ2

+ c

a = − 127.37 MeV fm−3 b = 876.27 MeV2

c = 1.7816 × 10−2 pQCD cannot generate…?
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Condensation
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Brandes-Fukushima-Iida-Yu (2024)

Suppose the vacuum has a bosonic condensate:

V( |ϕ |2 ) = m2 |ϕ |2 +
λ
4

|ϕ |4 +
η
6

|ϕ |6

|ϕc |2 =
1
2η [ λ2 + 8η(μ2 − m2) − λ]

−μ2 |ϕ |2
from the kinetic term
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Condensation
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Brandes-Fukushima-Iida-Yu (2024)

Suppose the vacuum has a bosonic condensate:

ε − 3p =
2
3

(−μ2 + 4m2) |ϕc |2 +
λ
3

|ϕc |4

μ
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In progress…
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Summary

GW simulation can distinguish crossover and 
no-crossover (1st-order PT) EoSs. 

Total mass should be within a window. 

Trace anomaly goes negative… interpretation? 

Possibility to extract “condensate” from the trace 
anomaly from the observational data. 
(pQCD+CSC cannot give negative trace anomaly 
unless the CSC gap is unphysically large…?)
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