UNIFIED APPROACH TO SPIN HYDRODYNAMICS

Wojciech Florkowski

Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland

EMMI Workshop at the University of Wrocław Aspects of Criticality II 2-4 July 2024, Wrocław, Poland

based on: WF + M. Hontarenko, arXiv:2405.03263

Outline

1. Introduction

- 1.1 Is QGP the most vortical fluid?
- 1.2 Equilibrated spin
- 1.3 Different formulations of spin hydrodynamics

2. Kinetic-theory \rightarrow perfect spin hydrodynamics

- 2.1 Thermodynamic identities
- 2.2 Kinetic theory for particles with spin

3. Positive entropy production \rightarrow dissipative spin hydrodynamics

- 3.1 Non-equilibrium entropy current
- 3.2 Tensor decompositions
- 3.3 Navier-Stokes limit

4. Summary & Outlook

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

1 Introduction

1.1 Is QGP the most vortical fluid?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

First positive measurements of Λ spin polarization

Non-central heavy-ion collisions create fireballs with large global angular momenta which may generate a spin polarization of the hot and dense matter in a way similar to the Einstein-de Haas and Barnett effects Much effort has recently been invested in studies of polarization and spin dynamics of particles produced in high-energy nuclear collisions, both from the experimental and theoretical point of view L. Adamczyk et al. (STAR), (2017), Nature 548 (2017) 62-65, arXiv:1701.06657 (nucl-ex)

Global A hyperon polarization in nuclear collisions: evidence for the most vortical fluid www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever

The $\sqrt{s_{NN}}$ -averaged polarizations indicate a vorticity of $\omega = (9 \pm 1) \times 10^{21} \text{ s}^{-1}$, with a systematic uncertainty of a factor of two, mostly owing to uncertainties in the temperatur This far surpasses the vorticity of all other known fluids, including solar subsurface flow²³ (10^{-5} s^{-1}); supercell tornado cores²⁵ (10^{-5} s^{-1}); supercell tornado cores²⁵ (10^{-5} s^{-1}); supercell tornado the solar bubbles (100 s^{-1}); the great red spot of Jupiter²⁶ (up to 10^{-4} s^{-1}); and the rotating, heated soap bubbles (100 s^{-1}) used to model climate change²². Vorticities of up to 150 s^{-1} have been measured in turbulent flow²⁸ in bulk superfluid He II, and Gomez *et al.*²⁹ have recent produced superfluid nanodroplets with $\omega = 10^{7} \text{ s}^{-1}$.

 $\Delta t = 1 \text{ fm/c} = 3 \times 10^{-24} \text{ s}, \qquad \Delta t \,\omega_{\text{max}} = 27 \times 10^{-24} \times 10^{21} = 2.7 \times 10^{-2}$ Large angular momentum does not mean large rotation!

1.2 Equilibrated spin

J. Weyssenhoff and A. Raabe, Acta Phys. Pol. 9 (1947) 7 revival of interest in hydrodynamics of spin polarized systems in a series of works by Francesco Becattini and collaborators

Connection betweeen theory and experiment by the "spin Cooper-Frye formula" Pauli-Lubański vector defined by the spin polarization tensor $\omega^{\mu\nu}$

$$\pi^{\mu}(p) = -\frac{1}{8m} \varepsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int d\Sigma_{\lambda} p^{\lambda} n(1-n) \omega_{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n}$$

integral over freeze-out hypersurface Σ (1)

 spin degrees of freedom are equilibrated, spin-orbit coupling interaction included, asymmetric energy-momentum tensor, the spin polarization tensor is equal to thermal vorticity

$$\omega_{\mu\nu} = \omega_{\mu\nu} = -1/2 \left(\partial_{\mu} \beta_{\nu} - \partial_{\nu} \beta_{\mu} \right) \qquad \beta^{\mu} = u^{\mu}/T, \quad \beta = 1/T$$

the spin polarization tensor is not an independent hydrodynamic variable

- standard (dissipative) hydro is used, $\omega_{\mu\nu}$ determined by the standard hydrodynamic variables such as *T* and u^{μ}
- recent works on extension to include effects of the shear stress tensor
- equilibrium distribution functions obtained from QFT (Dirac field under rotation and acceleration, very specific boundary conditions)
- great success in decribing global polarization, problems to explain the longitudinal polarization

1.3 Different formulations of spin hydrodynamics

the case of massive spin-1/2 particles is considered only in this talk

- THV (thermal vorticity oriented) approach described above
 F. Becattini, L. Tinti, V. Chandra, I. Del Zanna, E. Grossi, M. Buzzegoli, G. Inghirami, I. Karpenko, ...
- 2. KT (kinetic theory) approach (Wigner functions, classical treatment of spin)
 - 2.1 LKT local collisions, spin part of total angular momentum conserved

B. Friman, WF, A. Jaiswal, E. Speranza, R. Ryblewski, A. Kumar, S. Bhadury, R. Singh, ...

2.2 NLKT - non-local collisions included, only total angular momentum conserved

N. Weickgenannt, E. Speranza, D. Rischke, D. Wagner, X.-L. Sheng, ...

3. IS (Israel-Stewart) approach

K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, K. Fukushima, S. Pu, A. Daher, A. Das, R. Biswas, G. Sarwar, M. Hasanujjaman, J. R. Bhatt, H. Mishra, J.-e. Alam, D.-L. Wang, S. Fang, ...

4. Lagrangian formulation

G. Torrieri, D. Montenegro, K. J. Goncalves, ...

STATISTICAL PHYSICS VS. THERMODYNAMICS KINETIC THEORY VS. HYDRODYNAMICS

2 Kinetic-theory → perfect spin hydrodynamics

2.1 Thermodynamic identities

• • • • • • • • • • • •

Standard form of thermodynamic relations extensivity \rightarrow intensivity rule

$$E + PV = TS + \mu N \rightarrow \epsilon + P = T\sigma + \mu n$$
 (2)

first law of thermodynamics and Gibbs-Duhem relation

$$d\varepsilon = Td\sigma + \mu dn, \qquad dP = \sigma dT + nd\mu$$
 (3)

 ε , *P*, *T*, σ , μ and *n* are the local energy density, pressure, temperature, entropy density, baryon chemical potential, and baryon number density

Tensor form of thermodynamic relations (Israel-Stewart) entropy current

$$S_{\rm eq}^{\mu} = \sigma u^{\mu} = P \beta^{\mu} - \xi N_{\rm eq}^{\mu} + \beta_{\lambda} T_{\rm eq}^{\lambda \mu}$$
(4)

$$dS_{\rm eq}^{\mu} = -\xi dN_{\rm eq}^{\mu} + \beta_{\lambda} dT_{\rm eq}^{\lambda\mu}, \qquad d(P\beta^{\mu}) = N_{\rm eq}^{\mu} d\xi - T_{\rm eq}^{\lambda\mu} d\beta_{\lambda}$$
(5)

standard notation: $\beta^{\mu} = u^{\mu}/T$, $\beta = \sqrt{\beta^{\lambda}\beta_{\lambda}} = 1/T$, and $\xi = \mu/T$

perfect-fluid forms: $N_{eq}^{\mu} = nu^{\mu}$ and $T_{eq}^{\lambda\mu} = (\varepsilon + P)u^{\lambda}u^{\mu} - Pg^{\lambda\mu} = \varepsilon u^{\lambda}u^{\mu} - P\Delta^{\lambda\mu}$

inclusion of spin, $\Omega_{\alpha\beta}$ - spin chemical potential, $S^{\alpha\beta}$ - spin density tensor

$$\varepsilon + \mathbf{P} = \mathbf{T}\sigma + \mu \mathbf{n} + \frac{1}{2}\Omega_{\alpha\beta}\mathbf{S}^{\alpha\beta} \tag{6}$$

$$d\varepsilon = Td\sigma + \mu dn + \frac{1}{2}\Omega_{\alpha\beta}d\mathbf{S}^{\alpha\beta}, \qquad dP = \sigma dT + nd\mu + \frac{1}{2}\mathbf{S}^{\alpha\beta}d\Omega_{\alpha\beta}$$
(7)

multiplication of the above equations by the hydrodynamic flow vector *u* gives the tensor (Israel-Stewart) form

$$\mathbf{S}_{\mathrm{eq}}^{\mu} = \mathbf{P}\beta^{\mu} - \xi \mathbf{N}_{\mathrm{eq}}^{\mu} + \beta_{\lambda} T_{\mathrm{eq}}^{\lambda\mu} - \frac{1}{2} \omega_{\alpha\beta} \mathbf{S}_{\mathrm{eq}}^{\mu,\alpha\beta}$$
(8)

$$dS_{eq}^{\mu} = -\xi dN_{eq}^{\mu} + \beta_{\lambda} dT_{eq}^{\lambda\mu} - \frac{1}{2}\omega_{\alpha\beta} dS_{eq}^{\mu,\alpha\beta}, \quad d(P\beta^{\mu}) = N_{eq}^{\mu} d\xi - T_{eq}^{\lambda\mu} d\beta_{\lambda} + \frac{1}{2}S_{eq}^{\mu,\alpha\beta} d\omega_{\alpha\beta} \quad (9)$$
spin tensor

$$S_{\rm eq}^{\mu,\alpha\beta} = u^{\mu} S_{\rm eq}^{\alpha\beta} \tag{10}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

analog to the perfect-fluid forms of $N_{\rm eq}^{\mu}$ and $T_{\rm eq}^{\lambda\mu}$

2.2 Kinetic theory for particles with spin

Internal angular momentum (Mathisson), classical spin vector, extended phase-space Review: WF, A. Kumar, R. Ryblewski, Prog.Part.Nucl.Phys. 108 (2019) 103709

$$s^{\alpha\beta} = \frac{1}{m} \varepsilon^{\alpha\beta\gamma\delta} p_{\gamma} s_{\delta}, \quad p_{\alpha} s^{\alpha} = 0, \quad s^{\alpha} = \frac{1}{2m} \varepsilon^{\alpha\beta\gamma\delta} p_{\beta} s_{\gamma\delta}$$
(11)

$$f_{\rm eq}^{\pm}(x,p,s) = \exp\left(-p \cdot \beta(x) \pm \xi(x) + \frac{1}{2}\omega_{\alpha\beta}(x)s^{\alpha\beta}\right)$$
(12)

macroscopic quantities expressed as the moments of the distribution function

$$N_{\rm eq}^{\mu} = \int dP \, dS \, p^{\mu} \left[f_{\rm eq}^{+}(x, p, s) - f_{\rm eq}^{-}(x, p, s) \right], \qquad \partial_{\mu} N_{\rm eq}^{\mu} = 0 \tag{13}$$

$$T_{\rm eq}^{\mu\nu} = \int dP \, dS \, p^{\mu} p^{\nu} \left[f_{\rm eq}^{+}(x, p, s) + f_{\rm eq}^{-}(x, p, s) \right], \qquad \partial_{\mu} T_{\rm eq}^{\mu\nu} = 0 \tag{14}$$

$$S_{\rm eq}^{\lambda,\mu\nu} = \int dP \, dS \, p^{\lambda} \, s^{\mu\nu} \Big[f_{\rm eq}^+(x,p,s) + f_{\rm eq}^-(x,p,s) \Big], \qquad \partial_{\lambda} S_{\rm eq}^{\lambda,\mu\nu} = 0 \tag{15}$$

conservation laws determine: $\beta(x)$, $\xi(x)$, and $\omega_{\alpha\beta}(x)$ — perfect spin hydrodynamics

イロト 不得 トイヨト イヨト

parametrization of the spin polarization tensor in terms of electric- and magnetic-like components (*k* and ω) in a direct analogy to MHD

$$\omega_{\alpha\beta} = k_{\alpha} u_{\beta} - k_{\beta} u_{\alpha} + t_{\alpha\beta}, \qquad t_{\alpha\beta} = \epsilon_{\alpha\beta\gamma\delta} u^{\gamma} \omega^{\delta}$$
(16)

k and ω are orthogonal to the flow vector: $k \cdot u = 0$ and $\omega \cdot u = 0$

spin tensor in the lowest order of k and ω (linear contribution)

$$S_{eq}^{\lambda,\mu\nu} = u^{\lambda} [A(T,\mu) (k^{\mu}u^{\nu} - k^{\nu}u^{\mu}) + A_{1}(T,\mu)t^{\mu\nu}]$$

$$+ \frac{A_{3}(T,\mu)}{2} (t^{\lambda\mu}u^{\nu} - t^{\lambda\nu}u^{\mu} + \Delta^{\lambda\mu}k^{\nu} - \Delta^{\lambda\nu}k^{\mu})$$

$$= u^{\lambda} S_{eq}^{\mu\nu} + \text{problem}$$
(17)

problem = term that is not proportional to u^{λ} kinetic theory does not lead to the form $S_{eq}^{\mu,\alpha\beta} = u^{\mu}S_{eq}^{\alpha\beta}$, even in local equilibrium state

different ways to proceed:

• IS approach, the kinetic theory result is ignored, one uses the form $S_{eq}^{\mu,\alpha\beta} = u^{\mu}S_{eq}^{\alpha\beta}$, even with a further simplifying assumption that $S_{eq}^{\alpha\beta} = A(T,\mu)\omega^{\alpha\beta}$ [phenomenological formula for the spin tensor] the phenomenological form is not connected to other versions by a pseudogauge transformation; dissipative spin hydrodynamics including the phenomenological spin tensor as the leading contribution is unstable, even in the second-order theory; inconsistent treatment of thermodynamic relations, terms like $\omega_{\mu\nu}S_{eq}^{\mu\nu}$ treated as first-order corrections although they are of the second order

LKT approach, only the linear terms are kept

the resulting formalism describes spin evolving in an external standard hydrodynamic background, since corrections to the energy-momentum tensor and baryon current start with the quadratic terms; moderately unstable solutions found for this scheme, thermodynamic relations become trivial, reduce to the standard ones

< 日 > < 同 > < 回 > < 回 > < □ > <

a solution stands behind the corner

W. Florkowski (IFT UJ)

July 1, 2024 16/30

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

From (11)–(14) one obtains tensor forms of thermodynamic relations valid for any value of the spin polarization tensor ω

$$S_{\rm eq}^{\mu} = T_{\rm eq}^{\mu\alpha}\beta_{\alpha} - \frac{1}{2}\omega_{\alpha\beta}S_{\rm eq}^{\mu,\alpha\beta} - \xi N_{\rm eq}^{\mu} + N^{\mu}, \qquad N^{\mu} = \coth\xi \ N_{\rm eq}^{\mu} \neq Pu^{\mu}$$
(18)

$$dS_{\rm eq}^{\mu} = -\xi dN_{\rm eq}^{\mu} + \beta_{\lambda} dT_{\rm eq}^{\lambda\mu} - \frac{1}{2}\omega_{\alpha\beta} dS_{\rm eq}^{\mu,\alpha\beta} \qquad \text{first law of thermodynamics}$$
(19)

$$d\mathcal{N}^{\mu} = N_{\rm eq}^{\mu} d\xi - T_{\rm eq}^{\lambda\mu} d\beta_{\lambda} + \frac{1}{2} S_{\rm eq}^{\mu,\alpha\beta} d\omega_{\alpha\beta} \qquad \text{Gibbs-Duhem relations}$$
(20)

Expansion up to second order in ω

$$N_{\rm eq}^{\mu} = \bar{n}(T,\xi,k^2,\omega^2)u^{\mu} + n_t(T,\xi)t^{\mu}, \qquad (21)$$

$$T_{\rm eq}^{\mu\nu} = \bar{\varepsilon}(T,\xi,k^2,\omega^2)u^{\mu}u^{\nu} - \bar{P}_{k\omega}(T,\xi,k^2,\omega^2)\Delta^{\mu\nu}$$

$$+ P_{k\omega}(T,\xi)(k^{\langle\mu}k^{\nu\rangle} + \omega^{\langle\mu}\omega^{\nu\rangle}) + P_t(T,\xi)(t^{\mu}u^{\nu} + t^{\nu}u^{\mu}).$$
(22)

 $t^{\mu} = t^{\mu\nu} k_{\nu} = \epsilon^{\mu\nu\alpha\beta} k_{\nu} u_{\alpha} \omega_{\beta}$

$$T_{\rm eq}^{\mu\nu} = \bar{\varepsilon}(T,\xi,k^2,\omega^2)u^{\mu}u^{\nu} - \bar{P}_{k\omega}(T,\xi,k^2,\omega^2)\Delta^{\mu\nu}$$

$$+ P_{k\omega}(T,\xi)(k^{\langle\mu}k^{\nu\rangle} + \omega^{\langle\mu}\omega^{\nu\rangle}) + P_t(T,\xi)(t^{\mu}u^{\nu} + t^{\nu}u^{\mu}).$$
(23)

Strong similarity to the case of anisotropic relativistic magnetohydrodynamics $E^{\mu} = 0, B^{\mu} \neq 0$ (similarly to $k^{\mu} = 0, t^{\mu} = 0, \omega^{\mu} \neq 0$)

$$T^{\mu\nu}_{;\nu} = \left[\left(\epsilon + p_{\perp} + \frac{B^2}{4\pi} \right) U^{\mu} U^{\nu} - \left(p_{\perp} + \frac{B^2}{8\pi} \right) g^{\mu\nu} + \left(p_{\parallel} - p_{\perp} - \frac{B^2}{4\pi} \right) n^{\mu} n^{\nu} \right]_{;\nu} = 0, \quad (39)$$

M. Gedalin and I. Oiberman, Phys. Rev. E51 (1994) 4901

W. Florkowski (IFT UJ)

Unified spin hydrodynamics

→

3 Positive entropy production \rightarrow dissipative spin hydrodynamics

3.1 Non-equilibrium entropy current

・ロト ・ 同ト ・ ヨト ・ ヨ

IS method - replacement of the equilibrium currents by the general ones (equilibrium + non-equilibrium corrections)

$$S^{\mu} = T^{\mu\alpha}\beta_{\alpha} - \frac{1}{2}\omega_{\alpha\beta}S^{\mu,\alpha\beta} - \xi N^{\mu} + N^{\mu}_{eq}$$
(24)

.

< ロ > < 同 > < 回 > < 回 >

Conservations laws, now for total angular momentum J = L + S

$$\partial_{\mu} \mathbf{N}^{\mu} = \mathbf{0}, \qquad \partial_{\mu} \mathbf{T}^{\mu\nu} = \mathbf{0}, \qquad \partial_{\mu} \mathbf{S}^{\mu,\alpha\beta} = \mathbf{T}^{\beta\alpha} - \mathbf{T}^{\alpha\beta}$$
 (25)

entropy production

$$\partial_{\mu} S^{\mu} = -\delta N^{\mu} \partial_{\mu} \xi + \delta T_{s}^{\mu\lambda} \partial_{\mu} \beta_{\lambda} + \delta T_{a}^{\mu\lambda} \left(\partial_{\mu} \beta_{\lambda} - \omega_{\lambda\mu} \right) - \frac{1}{2} \delta S^{\mu,\alpha\beta} \partial_{\mu} \omega_{\alpha\beta} \ge 0 \quad (26)$$

Generalized Tolman-Klein conditions define global equilibrium state:

$$\partial_{\mu}\xi = 0, \qquad \partial_{(\mu}\beta_{\lambda)} = 0, \qquad \omega_{\lambda\mu} = \partial_{[\mu}\beta_{\lambda]} = -\frac{1}{2} \left(\partial_{\lambda}\beta_{\mu} - \partial_{\mu}\beta_{\lambda} \right)$$
(27)

the last condition says that the spin polarization tensor is equal to the thermal vorticity tensor (starting point for F. Becattini's approach) The middle equation, $\partial_{\lambda}\beta_{\mu} + \partial_{\mu}\beta_{\lambda} = 0$, is **the Killing equation** with a solution of the form

$$\beta^{\mu} = \beta_0^{\mu} + \varpi^{\mu\nu} \mathbf{x}_{\nu}, \qquad \varpi^{\mu\nu} = -\varpi^{\nu\mu} = \text{const}, \qquad \beta_0^{\mu} = \text{const}$$
(28)

One possible solution: rigid rotation with a very special boundary condition at $R = 1/\Omega$

< ロ > < 同 > < 回 > < 回 >

3.2 Tensor decompositions

General (mathematical) decomposition of tensors into parts that are: i) either symmetric or antisymmetric, ii) either parallel or orthogonal to the flow, iii) with zero or non-zero trace. The simplest case, baryon current $N^{\mu} = N^{\alpha} (\Delta^{\mu}{}_{\alpha} + u^{\mu}u_{\alpha})$

Baryon current

$$\mathbf{N}^{\mu} = au^{\mu} + b^{\mu} \tag{29}$$

here $b^{\mu}u_{\mu} = 0$, altogether 4 parameters

Energy-momentum tensor

$$T^{\mu\nu} = c u^{\mu} u^{\nu} - e \Delta^{\mu\nu} + d^{\mu}_{s} u^{\nu} + d^{\nu}_{s} u^{\mu} + e^{\langle \mu\nu \rangle}_{s} + d^{\mu}_{a} u^{\nu} - d^{\nu}_{a} u^{\mu} + e^{\mu\nu}_{a}$$
(30)

here: $d_s^{\mu} u_{\mu} = d_a^{\mu} u_{\mu} = e_a^{\mu\nu} u_{\mu} = e_s^{\mu\nu} u_{\mu} = 0$, $e_s^{(\mu\nu)}$ is symmetric and traceless, $e_a^{\mu\nu}$ is antisymmetric 19 parameters, 3 can be eliminated by a suitable choice of the hydrodynamic flow (Landau vs. Eckart), 16 parameters left

Spin tensor

$$\mathbf{S}^{\lambda,\mu\nu} = -\mathbf{S}^{\lambda,\nu\mu} = u^{\lambda} \left[(f^{\mu}u^{\nu} - f^{\nu}u^{\mu}) + \epsilon^{\mu\nu\rho\sigma}u_{\rho}\mathbf{w}_{\sigma} \right] + i^{\lambda\mu}u^{\nu} - i^{\lambda\nu}u^{\mu} + j^{\lambda\mu\nu}$$
(31)

here: $f^{\mu}u_{\mu} = w^{\mu}u_{\mu} = 0$, $i^{\lambda\mu}u_{\lambda} = i^{\lambda\mu}u_{\mu} = 0$, $j^{\lambda\mu\nu} = -j^{\lambda\nu\mu}$, $j^{\lambda\mu\nu}u_{\lambda} = j^{\lambda\mu\nu}u_{\mu} = j^{\lambda\mu\nu}u_{\nu} = 0$, $i^{\lambda\mu}$ can be further decomposed into symmetric (with zero and non-zero trace) and antisymmetric parts 24 parameters

<ロ> <四> <四> <四> <四> <四</p>

Landau matching conditions

$$\mathbf{N}^{\mu}\boldsymbol{u}_{\mu} = \mathbf{N}^{\mu}_{\mathrm{eq}}\boldsymbol{u}_{\mu}, \qquad (32)$$

$$T^{\mu\nu}u_{\mu}u_{\nu} = T^{\mu\nu}_{eq}u_{\mu}u_{\nu}, \qquad (33)$$

$$\mathbf{S}^{\lambda,\mu\nu}\boldsymbol{u}_{\lambda} = \mathbf{S}^{\lambda,\mu\nu}_{\mathrm{eq}}\boldsymbol{u}_{\lambda}. \tag{34}$$

The consequences of Eqs. (32)-(34) are straightforward:

$$a = \bar{n}(T,\xi,k^2,\omega^2), \qquad (35)$$

$$c = \bar{\varepsilon}(T,\xi,k^2,\omega^2), \qquad (36)$$

$$f^{\mu} = A(T,\xi)k^{\mu}, \qquad (37)$$

$$\mathbf{w}^{\mu} = \mathbf{A}_{1}(T,\xi)\omega^{\mu}. \tag{38}$$

one can choose T, ξ , k^{μ} , and ω^{μ} (by solving Eqs. (35)–(38)) in such a way that certain parts of N^{μ} , $T^{\mu\alpha}$, and $S^{\mu,\alpha\beta}$ have the form of the equilibrium tensor

3.3 Navier-Stokes limit

イロト イヨト イヨト イヨト

d

components of the total baryon current

$$b^{\mu} = -\lambda \nabla^{\mu} \xi + t^{\mu}. \tag{39}$$

energy-momentum tensor

$$s^{\mu} = -\kappa (Du^{\mu} - \beta \nabla^{\mu} T) + P_t t^{\mu}, \qquad (40)$$

$$d_{a}^{\mu} = -\lambda_{a}\beta^{-1}(\beta D u^{\mu} - \beta^{2}\nabla^{\mu}T - 2k^{\mu}), \qquad (41)$$

$$e = \bar{P} - \zeta \theta - (1/3) P_{k\omega} (k^2 + \omega^2), \qquad (42)$$

$$\mathbf{e}_{\mathbf{s}}^{\langle\mu\nu\rangle} = 2\eta\sigma^{\mu\nu} + P_{\mathbf{k}\omega}(\mathbf{k}^{\langle\mu}\mathbf{k}^{\nu\rangle} + \omega^{\langle\mu}\omega^{\nu\rangle}), \qquad (43)$$

$$\mathbf{e}_{\mathbf{a}}^{[\mu\nu]} = \gamma \left(\beta \nabla^{[\mu} u^{\nu]} + t^{\mu\nu}\right). \tag{44}$$

spin tensor

$$i^{\lambda\mu} = -\chi_1 \Delta^{\lambda\mu} u^{\beta} \nabla^{\alpha} \omega_{\alpha\beta} - \chi_2 u_{\nu} \nabla^{\langle \lambda} \omega^{\mu \rangle \nu}$$
(45)

$$-\chi_3 u_\nu \Delta^{[\mu}_{\rho} \nabla^{\lambda]} \omega^{\rho\nu} + \frac{\gamma_3}{2} t^{\lambda\mu},$$

$$j^{\lambda\mu\nu} = \frac{\chi_4}{2} \nabla^{\lambda} \omega^{\langle \mu \rangle \langle \nu \rangle} + \frac{A_3}{2} (\Delta^{\lambda\mu} k^{\nu} - \Delta^{\lambda\nu} k^{\mu}), \qquad (46)$$

TWO SCALES FOR EXPANSION: GRADIENTS (KNUDSEN NUMBER) & MAGNITUDE OF THE SPIN POLARIZATION TENSOR

W. Florkowski (IFT UJ)

▶ < ≣ ► ≣ ৩৭০ July 1, 2024 26/30

4. Summary and Outlook

- a unified (hybrid) approach to spin hydrodynamics is proposed that combines the results of kinetic theory with the IS method
- consistency beetween LKT and IS approaches can be achieved
- technical difficulties of NLKT can be circumvented
- a different starting point compared to THV approach
- second order theory (in gradients) needed

< ロ > < 同 > < 回 > < 回 >

Back-up slides

イロト イヨト イヨト イヨト

$N^{\mu} = nu^{\mu}$ current = density × flow vector analogies for energy, momentum and spin

1) conservation of energy and momentum with an asymmetric energy-momentum tensor

$$T^{\mu\nu}(x) = g^{\mu}(x)u^{\nu}(x), \quad \partial_{\nu}T^{\mu\nu}(x) = 0$$
(47)

 u^{μ} is the four-velocity of the fluid element, while g^{μ} is the density of four-momentum with the notation $\partial_{\nu}(fu^{\nu}) \equiv Df$ we may write $Dg^{\mu} = 0$

2) conservation of total angular momentum $J^{\lambda,\mu\nu} = L^{\lambda,\mu\nu} + S^{\lambda,\mu\nu}$ (orbital and spin parts)

$$L^{\lambda,\mu\nu}(x) = x^{\mu}T^{\nu\lambda}(x) - x^{\nu}T^{\mu\lambda}(x), \quad S^{\lambda,\mu\nu}(x) = s^{\mu\nu}(x)u^{\lambda}(x)$$
(48)

 $s^{\mu\nu} = -s^{\nu\mu}$ describes the spin density

$$\partial_{\lambda} J^{\lambda,\mu\nu} = \mathbf{0} \to D s^{\mu\nu} = g^{\mu} u^{\nu} - g^{\nu} u^{\mu}$$
⁽⁴⁹⁾

3) 10 equations for 13 unknown functions: g^{μ} , $s^{\mu\nu}$ and u^{i} (i = 1, 2, 3) additional constraint has been adopted, the Frenkel (or Weyssenhoff) condition $s^{\mu\nu}u_{\mu} = 0$

ideas still frequently cited in the context of the Einstein-Cartan theory

W. Florkowski (IFT UJ)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Pseudo-gauge transformation (QCD language in the context of the proton spin puzzle: adding boundary terms)

$$T^{\prime\mu\nu} = T^{\mu\nu} + \frac{1}{2} \partial_{\lambda} \left(\Phi^{\lambda,\mu\nu} + \Phi^{\nu,\mu\lambda} + \Phi^{\mu,\nu\lambda} \right)$$
(50)

$$S^{\prime\lambda,\mu\nu} = S^{\lambda,\mu\nu} - \Phi^{\lambda,\mu\nu} + \partial_{\rho} Z^{\mu\nu,\lambda\rho}$$
(51)

One most often considers free Dirac field, should describe a gas of fermions, good starting point for thermodynamics and/or hydrodynamics

Canonical forms (directly obtained from Noether's Theorem): asymmetric energy-momentum tensor, spin tensor directly expressed by axial current (couples to weak interactions)

Belinfante-Rosenberg version, $\Phi^{\lambda,\mu\nu} = S^{\lambda,\mu\nu}$, $Z^{\mu\nu,\lambda\rho} = 0$, (couples to classical gravity); spin tensor appears in modified theories of gravity, couples to torsion

de Groot, van Leuveen, van Weert (GLW) forms: symmetric energy-momentum tensor and conserved spin tensor

Hilgevoord and Wouthuysen (HW) choice: symmetric energy-momentum tensor and conserved spin tensor