The imprint of conservation laws on correlated particle production

- **Anar Rustamov**
- <u>a.rustamov@gsi.de</u> a.rustamov@cern.ch
- In collaboration with: P. Braun-Munzinger, B. Friman, K. Redlich, J. Stachel
 - **EMMI Workshop** at the University of Wrocław
 - July 2 4, 2024, Wrocław, Poland

Aspects of Criticality II

Deciphering the phases with fluctuations/correlations

decoding the phase structure of matter with <u>cumulants</u> of multiplicity distributions

E-by-E fluctuations are predicted within Grand Canonical Ensemble

for a thermal system of fixed volume V and temperature T

 κ_n - cumulants (measurable in experiment)

 $\hat{\chi}_{n}^{B}$ - susceptibilities (e.g. from IQCD)

 $T_{pc}^{LQCD} = 156.5 \pm 1.5 \text{ MeV}$ $T_{FO}^{ALICE} = 156.5 \pm 1.5 \pm 3$ MeV (sys)

Measurements vs. theoretical calculations

$$\Delta N = N_B - N_B$$

 r^{th} order cent

advantage: Ģ

in GCE

particles (Poisson)

$$\frac{\kappa_m}{\kappa_n} = 1$$

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

 $V_{\bar{R}}$ occurs with probability $p(\Delta N)$ (measured)

tral moment:
$$\mu_r = \sum_{\Delta N} (\Delta N - \langle \Delta N \rangle)^r p(\Delta N)$$

First 4 cumulants: $\kappa_1 = \langle \Delta N \rangle$, $\kappa_2 = \mu_2$, $\kappa_3 = \mu_3$, $\kappa_4 = \mu_4 - 3\mu_2^2$

sensitive to small (critical) signals

disadvantage: sensitive to any non-critical contributions

$$\frac{\kappa_n(N_B - N_{\bar{B}})}{VT^3} = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_B)}{\partial (\mu_B / T)^n} \equiv \hat{\chi}_n^B$$

Minimal baseline: Ideal Gas EoS + GCE

net-particles (Skellam)

$$\frac{\kappa_{2m}}{\kappa_{2n}} = \frac{\langle N \rangle + \langle \bar{N} \rangle}{\langle N \rangle + \langle \bar{N} \rangle} = 1, \qquad \frac{\kappa_{2m}}{\kappa_{2n+1}} = \frac{\langle N \rangle + \langle N \rangle}{\langle N \rangle - \langle N \rangle}$$

Outline

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

- Conservation laws within Canonical Ensemble
- Do we understand the NEW (BESII) STAR data?

Fluctuations in Canonical Ensemble

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

B net-baryon number, conserved in each event modified Bessel function of the first kind I_{B} single particle partition functions for baryons, anti baryons Z_B , $Z_{\bar{B}}$ auxiliary parameters for calculating cumulants of baryons, anti baryons $\lambda_R, \lambda_{\bar{R}}$

$$\frac{\kappa_{2}(B-\bar{B})}{\langle n_{B}+n_{\bar{B}}\rangle} = 1 - \frac{\alpha_{B}\langle n_{B}\rangle + \alpha_{\bar{B}}\langle n_{\bar{B}}\rangle}{\langle n_{B}+n_{\bar{B}}\rangle} + (z^{2} - \langle N_{B}\rangle\langle N_{\bar{B}}\rangle) \frac{(\alpha_{B}-\alpha_{\bar{B}})^{2}}{\langle n_{B}+n_{\bar{B}}\rangle}$$

$$\langle N_{B}\rangle, \langle N_{\bar{B}}\rangle - \text{in } 4\pi \qquad \text{canonical suppression}$$

$$\langle n_{B}\rangle, \langle n_{\bar{B}}\rangle - \text{inside acceptance}$$

$$\alpha_{B} = \langle n_{B}\rangle/\langle N_{B}\rangle - \text{acceptance for } B$$

$$\alpha_{\bar{B}} = \langle n_{\bar{B}}\rangle/\langle N_{\bar{B}}\rangle - \text{acceptance for } \bar{B}$$

$$z - \text{single baryon partition function}$$

P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141 A. Bzdak, V. Koch, V. Skokov, Phys.Rev.C 87 (2013) 1, 014901

Fixing input parameters

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

Comparison to OLD (BESI) STAR data

remarkable agreement between Ş calculations and the STAR data is obvious

artefact of a fixed acceptance in rapidity

for higher energies the ratios approach the HRG baseline

- significant reduction of κ_6/κ_2 going from Ş positive values at LHC to negative values at lower energies
- \leq LQCD results for κ_6/κ_2 are negative for all energies (<u>for net-baryons</u>)

P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

NEW (BESII) STAR DATA

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

κ_3/κ_2 of net-protons

NEW STAR DATA, κ_3/κ_2

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Notation: $C_i \rightarrow \kappa_i$

NEW vs. OLD STAR DATA, κ_3/κ_2

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data are systematically below the OLD ones

Ş difference at 14.5 GeV is significant!

OLD vs. NEW STAR DATA, κ_3/κ_2 (Comparison to CE baseline)

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data are systematically below the OLD ones

- Ş difference at 14.5 GeV is significant!
- Ş systematically below the CE baseline

See also: V. Vovchenko, V. Koch, Ch. Shen PRC 105 (2022), 1, 014904

NOTE: The baseline is calculated based on OLD (BESI) STAR multiplicities!

NEW (BESII) STAR DATA κ_1/κ_2 of net-protons

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NEW STAR DATA, κ_1/κ_2

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Note: We prefer to plot C_1/C_2

Notation: $C_i \rightarrow \kappa_i$

OLD vs. NEW STAR DATA, κ_1/κ_2

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Note: We prefer to plot C_1/C_2

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data are systematically <u>above</u> the OLD ones

OLD vs. NEW STAR DATA, κ_1/κ_2 (Comparison to CE baseline)

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Note: We prefer to plot C_1/C_2

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data are systematically <u>above</u> the OLD ones Ş systematically <u>above</u> the CE baseline

See also: V. Vovchenko, V. Koch, Ch. Shen PRC 105 (2022), 1, 014904

NOTE: The baseline is calculated based on OLD (BESI) STAR multiplicities!

NEW (BESII) STAR DATA

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

κ_4/κ_2 of net-protons

NEW STAR DATA, κ_4/κ_2

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NEW STAR data points are digitised from the pdf plot!

OLD vs. NEW STAR DATA, κ_4/κ_2

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Note: We prefer to plot C_1/C_2

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data with significantly reduced uncertainties

OLD vs. NEW STAR DATA, κ_4/κ_2 (Comparison to CE baseline)

NEW STAR data points are digitised from the pdf plot!

A. Pandav, CPOD 2024

Note: We prefer to plot C_1/C_2

Notation: $C_i \rightarrow \kappa_i$

Ş The NEW data with significantly reduced uncertainties

deviation from the CE baseline is more significant

See also: V. Vovchenko, V. Koch, Ch. Shen PRC 105 (2022), 1, 014904

NOTE: The baseline is calculated based on OLD (BESI) STAR multiplicities!

NEW STAR data, cumulants of net-protons (summary)

Canonical baselines show systematic deviations from NEW (BESII) STAR data

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

NOTE: The baseline is calculated based on OLD (BESI) STAR multiplicities!

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

Introducing local correlations

Implementation of local correlations

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

- exploiting Canonical Ensemble in the full phase space
 - \Re no fluctuations in 4π (like in experiments)

Local conservations: <u>correlations in rapidity space</u>

P. Braun-Munzinger, K. Redlich, A.R., J. Stachel, e-Print: 2312.15534 [nucl-th]

Correlations and the Metropolis algorithm

start with uncorrelated $\{y_B\}, \{y_{\bar{B}}\}$

P. Braun-Munzinger, K. Redlich, A.R., J. Stachel, e-Print: 2312.15534 [nucl-th]

Canonical Ensemble + correlations

╋

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

B net baryon number, conserved in each event modified Bessel function of the first kind I_R single particle partition functions for baryons, anti baryons $Z_{B}, Z_{\overline{B}}$ auxiliary parameters for calculating cumulants of baryons, anti baryons $\lambda_R, \lambda_{\bar{R}}$

baryon number conservation (CE partition function)

Input from experiments

baryon rapidity distributions

 $\stackrel{>}{=}$ measured (canonical) $\langle N_{R} \rangle$, $\langle N_{\bar{R}} \rangle$

$$z = \sqrt{z_B z_{\bar{B}}}$$
 is calculated by solving
 $\partial \ln Z_P | I_{P-1}(27)$

$$\langle N_B \rangle = \lambda_B \frac{\partial \ln Z_B}{\partial \lambda_B} \Big|_{\lambda_B, \lambda_{\bar{B}} = 1} = z \frac{I_{B-1}(ZZ)}{I_B(2Z)}$$

Results on $B - \overline{B}$, B - B and $\overline{B} - \overline{B}$ correlations, ALICE energy

Correlations between $B - \bar{B}$

P. Braun-Munzinger, K. Redlich, A.R., J. Stachel, e-Print: 2312.15534 [nucl-th]

correlations between like-sign particles leads to cluster formation. Fluctuations increase.

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

Canonical baselines vs. ALICE data

P. Braun-Munzinger, B. Friman, K. Redlich, A.R., J. Stachel, NPA 1008 (2021) 122141 P. Braun-Munzinger, K. Redlich, A.R., J. Stachel, e-Print: 2312.15534 [nucl-th]

A.R., P. Braun-Munzinger, J. Stachel, QM 2022

Calls into question baryon production mechanism in Hjing (Lund String Fragmentation)

Hijing results suggest $\rho = 0.98$ ($\Delta y_{corr} = 1.7$) \leftrightarrow Strong local correlations

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

A.R., NPA 967 (2017) 453-456 ALICE: Phys. Lett. B 807 (2020) 135564 Phys. Lett. B (2022) 137545

 \forall Alice data: best description with $\rho = 0.1$ ($\Delta y_{corr} = 12$) \leftrightarrow Long range correlations

~3%

Chasing for proton clusters

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

Chasing for proton clusters

proton clusters and cumulants A. Bzdak, V. Koch, V. Skokov, Eur. Phys. J.C 77 (2017) 5, 288

correlations between baryons

 \mathbb{I} for large values of ρ and small values of Δy it is more probable to treat protons in pairs this process increases the finally measured proton number fluctuations

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

Cumulants vs. Proton clustering, κ_1/κ_2

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

- Correlated proton production <u>suppresses</u> the baseline
 - NEW STAR data shows opposite behaviour
- technically anti-correlations (repulsion) could catch the trend of the data (in progress)

Cumulants vs. Proton clustering, κ_3/κ_2

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

- correlated proton production increases the baseline
 - NEW STAR data shows opposite behaviour
- technically anti-correlations (repulsion) could catch the trend of the data (in progress)

Factorial cumulant vs. Proton clustering

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

$$\begin{split} C_1(p) &= \kappa_1(p) = \langle n_p \rangle \\ C_2(p) &= -\kappa_1(p) + \kappa_2(p) \\ C_3(p) &= 2\kappa_1(p) - 3\kappa_2(p) + \kappa_3(p) \\ C_4(p) &= -6\kappa_1(p) + 11\kappa_2(p) - 6\kappa_3(p) \\ R. \text{ Holzmann, V. Koch, A. R., J. Stroth, 2403.03598 (2024)} \end{split}$$

correlated proton production moves the baseline away from the STAR data

technically anti-correlations could solve the problem (<u>in progress</u>)

Predictions

Suggestion: Differential study of fluctuations, e.g., as a function of rapidity, pt and for each collision energy

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

Summary

Fluctuations of conserved charges from event-to-event are fundamental/direct tools to study phase transitions

- The NEW (BESII) STAR data show deviations from canonical baselines
 - The hypothesis of proton clustering moves baselines away from the STAR data
 - The NEW STAR data suggest that repulsion (anti-correlation) dominates over attraction
 - The implementation is in progress

- Not covered in this talk (for recent review see: R. Holzmann, V. Koch, A. R., J. Stroth, 2403.03598 (2024), NPA in print)

Differential measurements, including correlations, as a function of rapidity, pt, energy, etc., are needed

A. Rustamov, EMMI Workshop, Aspects of Criticality II, 2-4 July, Wrocław, Poland

THANK YOU For your Attention

