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Motivation - QCD phase diagram

CEP - an open problem because :

e Experimentally hard - system dynamic
and short lived

e Strongly interacting at low energy
e Lattice has sign problem at finite pp

e |n FRG one has truncations ...

Yet, a lot of progress in studying the phase
diagram comes from lattice studies of QCD

HB e Taylor expansions about pugz = 0,

Conjectured phase diagram

e Analytic continuation from imaginary
Ug simulations




Yang-Lee zeros and edge singularities

e Taylor expansions limited by complex singularities of the partition function!

Im[h] Tr>T. I'=T.
LYE
>
» Re[h] >
Finite V Vo> o V- o

LY zeros for the Ising model

e (Gap in density of zeros in symmetric phase - closest zero is the Yang-Lee
edge - described by ¢ theory with imaginary coupling



Yang-Lee zeros and edge singularities

e LYE is a critical point with one relevant scaling direction M — M, ~ (h — h_)°
e Moreover, continuously connected to the standard critical pointatz =0 ,2 =10

e Images of the Spinodal points in the 7' < T, branch of the EoS

/ 4=3 N=1
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Yang-Lee zeros and edge singularities

[
Location of LYE z, = T , is universal, f;(z) = (z —2z.)°
A0

e Phase is determined from Circle Theorem in Ising model but |z.| not

3
2 5.(/
1t ‘ zc’ /,/’//
T,
R
sl T 200
~
—1t .
0.0 0.5 1.0 1.5 2.0
z Re =

e € expansion around d = 4 not an option because LYE described by ¢? theory

e Until recently only results from FRG were present.



Scaling functions from lattice simulations

e Scaling functions in 3 —d O(N) for N € {1,2,4} and their finite size
dependence studied using Monte Carlo simulations

e New MC simulations with improved ¢* models aimed at suppressing
corrections to scaling performed for 3 — d O(2) and Z(2) universality classes

e For O(4), still an un-improved Hamiltonian but updated parametrization from

0
o Quantity of interest in the following : M = — 61]; = h'%f (z)

e The LYEs would then be located at zeros of the inverse magnetic field

1 dz(f¢
susceptibility I = i;]fG) =0
G\<c (C;




Scaling functions from la

A

ice simulations

e Using the Schofield
Widom-Giriffiths form,

parametrization of the

M = myRP0 , t = R(1 — 0%) , h = hyR”°h(0)

the following fit parameters were obtained*

I Calculated on Lattice using Monte Carlo simulations !
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Schofield parametrisation and Lee-Yang edges

e Under this parametrization, (t, h) — (R, 0), with R defining the distance
from the critical point.

¢ Thermodynamic functions are analytic functions of 6

e The scaling function takes the form . il K
f5(0) = 0 <h(9) ) 1/5 : g
G ) N\ A q
@ 0 E 0 :::\ 4r1 0
S S 7 %
. . . B N /5 L 0.2
e with 4(6) odd polynomial and the scaling : LN |
- IS ]
variable z = t/h'P° givenby, T /))) )/ NP .
\\f 0.6
1 — (92 h(o —1/p6 / | -0.8
Z(Q) — (91/'3 Q 6 -4 -2 0 2 4 6
02—1 9 \ h(l) Re(©)

[F. Karsch, S.S., C. Schmidt Phys.Rev.D 109
(2024)]



Schofield parametrisation and Lee-Yang edges

e Immediate consequence of the map : points on Im[f] axis have the LY phase

e Entire real z axis mapped between 6 € (0,6,) withz=0atf =1, z > + ooat
0=0andz —> —oc0atld =0,

e The location of the LYE is obtained by solving

dz(0) _0 — dz(0)
df(2) do

=0 0=2p50h0) — (6> —1) h'(0)

e We find additional zeros than the expected LYEs

e The map z(€) — 0 is not invertible and we need to find the region where the
map is well defined.

e Verify that f5(z.) has a branch cut originating from z. and its complex
conjugate



Analysis for 3 —d Z2

e Using the critical exponents :

f = 0.32643(7) and 6 = 4.78982(85) from

e Ansatz for

h@) = (0 + hy 6 + hs0° + h;07)

e Location of the LYEs : |z. |, with
|z.| = 2.418(55) and ¢ = 0. 9935+191¢LY

T

e Branch cut in f;(z) along the branch cut

3d — Z2: Lines of constant arg(z) ,
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[F. Karsch, S.S., C. Schmidt Phys.Rev.D 109 (2024)]



Analysis for 3 —d O(2)

e Using the critical exponents : f = 0.34864(7) and 6 = 4.7798(5) from

o Ansatz for h(0) = (6 + hy 0% + hs 0°) x (1 — 62/62)" now includes the
Goldstone modes

e Location of the LYEs : |z.| = 1.900(46), ¢/¢;y = 1.024(30)

15 I I
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Analysis for 3 —d O(4)

e Using the critical exponents : f = 0.380(2) and 6 = 4.824(9) from

e Ansatz for h(0) = (6’ + h, 0° + hs (95> X (1 — (92/(93)2 , same as O(2) with

different parameters

e Locations of LYEs: |z.| = 1.469(20), ¢/¢; y = 1.023(34)

3d — O(4): Branch cut in f-(z)
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1 Schmidt Phys.Rev.D 04 - ©p=1.351 0.8m
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3d — O(2): Lines of constant arg(z) , region where map is single valued



Analysis for mean field approximation and N — oo

e Inthe MFA (g = 1) and N = oo (g = 2) the scaling function and critical
exponents are given by

I 3 MFA
fz+ 128 =1 —_ - s5=d7
GG h=7 5 N oo3—d

e We can determine LYEs using the Schofield parametrization

0, =+ b
\/5—(5— 1)

e Substituting 6. into the equation for z(8), the universal location of the Lee-
Yang edge singularity in the complex z—plane is obtained as

B 3. 2—2/3 eii7r/3 MFA
2y = 20.) = ~8/5 +inl5
5:27° e " N> o003 —d




Comparison of results with FRG

e The only other results that exist for | z.| are from FRG

[z | o@ | o@

“ero [ 2450 | 20u0) | 1550

Relevance for Lattice QCD

e Gives us another universal quantity more suited for finite volume studies.

e Being the closest complex singularity in parameter space - will effect the
Taylor series coefficients!

15



Summary

e Using the Schofield parametrization, it is possible to extract the universal
location of Lee-Yang edge singularities from lattice based studies - first
results from lattice based studies.

e We considered the scaling functions in 3 —d O(N = 1,2,4,00) universality
class and MFA.

e A discussion on the region in the complex 6 plane, where the function z(0)
is invertible was also discussed for all the cases.

e Various choices for the order of the polynomial 4(0) studied - results stable
and consistent with FRG (except O(4))

Outlook

e The choice of a truncated polynomial ansatz for /(0) needs to be refined - in
order to study how these edge singularities are approached. 6
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Higher Taylor coefficients
and LYE

In general since u*> = ui+ is the closest singularity to the
origin, the radius of convergence of the Taylor expansion in
Eq. (15) is |uiy|. However the coefficients c,(T) contain
much more information than just the radius of convergence.
The Darboux theorem [30,31] states that the behavior of the
coefficients ¢, (7T) at large order n is directly related to the
behavior of the function in the vicinity of the nearest
singularity. Specifically, if the Taylor expansion coeffi-

=== cicnts of a function f(z) = > < , b, 7" near the origin have
n=0 “~n g

1
d=3 oyr= 5 o= 0.085(1)

conformal bootstrap

leading large-order growth as n — oo:

by~ [(”“’_ l)cp(zO) - (Hg_z)zwﬁ'(z@)

20 n n

+<n+j—3>;_%!¢,,(z())_...] (16)

then the leading singularity is located at z;, and in the
vicinity of z, the function behaves as

4

£(2) ~ b(2) (1 _ —) Tip@), zoz (1)

20

where ¢(z) and y(z) are analytic near z,. This means that
from a detailed study of the expansion coefficients ¢, (T),
derived from the expansion about ¢ = 0, we can learn
about the expansion of the function near the critical point.
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Langer cut in 3d — Z2
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Figure 3: Analytic continuation ¢ — —t from the principal, i.e., high-temperature sheet (left
panel) to the low-temperature sheet (right panel) of the scaling function z(w) of the Ising theory
as conjectured by Fonseca and Zamolodchikov, where w ~ Ht #% while keeping the magnetic
field H > 0 fixed at d = 4 — ¢. After analytic continuation the metastable branch H < 0 can
be accessed by rotating H clockwise in the complex plane, while keeping ¢ < 0 fixed. The line
representing the Langer cut is rotated away from imaginary axis by an angle A¢, cf. Eq. (3.2).
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[F. Karsch, S.S., C. Schmidt

Phys.Rev.D 109 (2024)]
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Tuning of parameters in 3d — O(4)

[F. Karsch, S.S., C.
Schmidt Phys.Rev.D
109 (2024)]
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Scaling of LYEs when system has a

nhase transition :
Im[h] *
* I3 % LYEs
T.<T,<T,<T, *
*
l;
7, =
1,118
h (L)
Re[h]

Fixed Volume analysis
with varying T

21




Complex zeros of partition function

Zoe=ZWV.T.p)= ) cy(T.V)e ™ ¢y >0
N=0
For finite V, real T and 5 : View as a polynomial of fugacity z = e#! to see

Loc>0

Case of 2D—Ising

[S.S., M. Cipressi, F. Di Renzo, Phys.Rev.D 109 (2024)]
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