Influence of dynamical screening of four-quarks interaction on the chiral phase diagram

Michał Szymański In collaboration with P. M. Lo, K. Redlich and C. Sasaki

Institute of Theoretical Physics, University of Wroclaw

EMMI Workshop at the University of Wrocław - Aspects of Criticality II

2-4.07.2024

¹michal.szymanski@uwr.edu.pl

Investigation of QCD phase diagram in μ_B , T directions

- Requires non-preturbative treatment
- LQCD \rightarrow first-principle calculations
- $\blacktriangleright \ \ \mathsf{Effective \ models} \to \mathsf{QCD}\text{-like \ theories}$
 - Extension to large μ
 - Building intuitions \rightarrow Complementary to more advanced methods

Other directions also possible, e.g. quark masses or magnetic field

This talk:

- Investigation of in-medium screening of four-quark interaction
- \blacktriangleright Chiral phase transition at finite $\mu^{\,1}$ and $B^{\,2}$

¹MS, PM Lo, K. Redlich, C. Sasaki, 2309.03124

²PM Lo, MS, K. Redlich, C. Sasaki, Eur. Phys. J. A (2022) 58:172

Starting point \rightarrow Chiral model inspired by Coulomb gauge QCD³

$$\mathcal{L} = ar{\psi}(x)(i\partial \!\!/ - m_0)\psi(x) + \int d^4y
ho^a(x)V^{ab}(x-y)
ho^b(y)$$

with

$$\rho^a(x) = \bar{\psi}(x)\gamma^0 T^a \psi(x)$$
 → color quark current
 $V^{ab}(x-y)$ → Interaction potential

This work \rightarrow Contact interaction, gap equation:

$$M = m_0 + C_F V_0 \int \frac{d^3 q}{(2\pi)^3} \frac{M}{2E} \left(1 - N_{th}(E,\mu) - \bar{N}_{th}(E,\mu) \right)$$

The same form as the NJL model if $C_F V_0 \rightarrow 4N_c N_f (2G_{N II})$

► NJL → Scalar-scalar interaction

$$\mathcal{L}_{NJL} = \mathcal{L}_0 + G_{NJL} \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2 \right]$$

 \blacktriangleright Current model \rightarrow Vector-vector interaction ▶ Systematic improvements possible → dressing by polarization ³See e.g. P. M. Lo, E. S. Swanson Phys. Rev. D 81 034030 (2010) ◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● ● へ ● 3/22 Dressing by polarization, ring diagram approximation

$$\tilde{V}_{0}^{-1} = V_{0}^{-1} - \frac{1}{2}N_{f}\Pi_{00}(p_{0},\vec{p}) \quad \Rightarrow \quad \tilde{V}_{0} = \frac{1}{V_{0}^{-1} - \frac{1}{2}N_{f}\Pi_{00}(p_{0},\vec{p})}$$

Static limit

$$m_{el}^2 = -rac{1}{2}N_f imes \Pi_{00}(p_0 = 0, ec{p} o 0)$$

 $\mathsf{Screening} \to \mathsf{Medium}\mathsf{-dependent}\ \mathsf{coupling}$

 $\mathsf{Contact} \text{ interaction} \to \mathsf{No} \text{ confinement}$

- Polyakov loop \rightarrow Statistical confinement
- $\blacktriangleright \Pi_{00}(M) \to \Pi_{00}(M,\ell,\bar{\ell})$
- Regulates the screening strength

Vacuum term \rightarrow Proper-time regularization

Solid lines: screening; dashed lines: no screening

Polyakov loop weakly modified by screening

▶ No backreaction of ring diagram on Polyakov loop gap equations

Gap equations \rightarrow multiple solutions

- \blacktriangleright Mean-field \rightarrow Stable solution from global minimum of the potential
- Current model \rightarrow DSE, start from gap equations

 $\mathsf{Gap}\ \mathsf{equations} \to \mathsf{multiple}\ \mathsf{solutions}$

- \blacktriangleright Mean-field \rightarrow Stable solution from global minimum of the potential
- Current model \rightarrow DSE, start from gap equations

Curent model

▶ DSE \rightarrow gap equations

$$f_1(\vec{\phi}) = 0, ..., f_n(\vec{\phi}) = 0$$

 $\vec{\phi} = (M, \ell, \bar{\ell})$

No potetnial to look for a minimum

 \blacktriangleright Strategy \rightarrow construct potential from gap eqauations Goal \rightarrow find a "potential" such that

$$\frac{\partial U(\phi_1,\phi_2,...\phi_n)}{\partial \phi_i} = f_i(\phi_1,\phi_2,...\phi_n)$$

Possible if

$$\frac{\partial f_i(\phi_1,\phi_2,...\phi_n)}{\partial \phi_k} = \frac{f_k(\phi_1,\phi_2,...\phi_n)}{\partial \phi_i}$$

 $\mathsf{Current} \ \mathsf{model} \to \mathsf{NOT} \ \mathsf{satisfied}$

No backreactoin of ring on Polyakov loop sector

 $\mathsf{Current} \ \mathsf{model} \to \mathsf{No} \ \mathsf{potential} \ \mathsf{exist}$

Approximation needed

Focus on chiral sector, Polyakov loop as a background
 Approximate potential:

$$\begin{split} \tilde{U}(M,\ell(T,\mu),\bar{\ell}(T,\mu)) &= U_0(m_0,\ell(T,\mu),\bar{\ell}(T,\mu)) \\ &+ 4N_cN_f \int_{m_0}^M F(M',\ell(T,\mu),\bar{\ell}(T,\mu)) dM'\,, \end{split}$$

with F from gap equation

$$F(M,\ell,\bar{\ell}) = \frac{M-m_0}{C_F \tilde{V}(M,\ell,\bar{\ell})} - M\left(I_{vac}(M) - I_{thermal}(M,\ell,\bar{\ell})\right)$$

< □ ▶ < **□ ▶** < ∃ ▶ < ∃ ▶ ∃| = のへで 11/22

Proper-time regularization

Screening: crossover \rightarrow CEP \rightarrow 1st order phase transition

PNJL: crossover

Contact interaction \rightarrow Regularization scheme dependence (both models!)

Why study QCD in strong magnetic field?

May be important for phenomenology:

- ▶ Non-central heavy-ion collisions (*eB* up to $15m_{\pi}^{2}$ ¹)
- Magnetars

Additional parameter to study QCD under extreme conditions

- Can be probed directly in LQCD simulations
- Possibility to test effective models

¹V. Skokov et al., Int.J.Mod.Phys.A24:5925-5932,2009

Schematic behavior of the quark condensate from first-principle numerical simulations

Opposite $T_C(B)$ for models and LQCD \rightarrow Possible missing interactions Screening?⁴

⁴2107.05521, 2109.04439

- ▶ LQCD → First-order transition for $4 \text{ GeV}^2 < eB_{crit.}^{LQCD} < 9 \text{ GeV}^{25}$
- Current model $\rightarrow eB_{crit.} \approx 0.5 \, {\rm GeV}^2 \ll eB_{crit}^{LQCD}$
- Approximation: $\Pi(M, \ell, \overline{\ell}) \to \xi \times \Pi(\overline{M} \approx 0.130 \text{ MeV}, \ell, \overline{\ell})$

Results at $\mu = 0$, B > 0: Dashed line – no dressing, $T_c(B) > T_c(0)$ Solid line with symbols – dressing, $T_c(B) < T_c(0)$

MS et al, work in progress

MS et al, work in progress

Baryon number fluctuations

Left: H. T. Ding et al. Eur. Phys. J. A 57, no.6, 202 (2021) Right: H. T. Ding et al. Acta Phys. Polon. Supp. 16, no.1, 1-A134 (2023)

MS et al, work in progress

Conclusions and outlook

Effect of the screening of 4-quark interaction

- ► B = 0: $T_C^{no \ screening} \approx 230 \ \text{MeV} \rightarrow T_C^{screening} \approx 160 \ \text{MeV}$
- $\mu_B > 0$: CP located at lower μ_B than in PNJL models
- $B \neq 0$: IMC due to screening, correct trend for χ^2_B

No need for artificial rescaling of the parameters or fitting the coupling

Future prospects

- ► Effect too strong → additional contributions to gap eqautions?
- Going beyond contact interaction, momentum dependence

Appendix

< □ ▶ < ⑦ ▶ < ミ ▶ < ミ ▶ ミ| = のへで 1/10

Final set of gap equations:

$$M = m_0 + C_F \tilde{V}_0(M, \ell) \left[I_{vac} - \int \frac{d^3 q}{(2\pi)^3} \frac{M}{2E} \left(N_{th}(E, \ell, \bar{\ell}, \mu) + \bar{N}_{th}(E, \ell, \bar{\ell}, \mu) \right) \right]$$
$$\tilde{V}_0(M, \ell, \bar{\ell}) = \frac{1}{V_0^{-1} + m_{el}^2(T, M, \ell, \bar{\ell})}$$
$$\frac{\partial}{\partial \ell} \left(\mathcal{U}_G + \mathcal{U}_Q \right) = 0$$
$$\frac{\partial}{\partial \bar{\ell}} \left(\mathcal{U}_G + \mathcal{U}_Q \right) = 0$$

Regularization

$$I_{vac} = \int rac{d^3 q}{(2\pi^3)} rac{M}{2E} o \int\limits_{1/\Lambda^2}^{\infty} rac{ds}{16\pi^2} rac{1}{s^2} e^{-M^2 s}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E = の Q @ 2/10

◆□ ▶ ◆● ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ● ● ● ○ ○ 3/10

◆□ ▶ ◆● ▶ ◆ ■ ▶ ◆ ■ ■ ⑦ Q @ 4/10

3D cutoff:

Screening: 1st order

 $\mathsf{PNJL}:\mathsf{crossover}\to\mathsf{CEP}\to\mathsf{1st}$ order phase transition

 $\mathsf{Contact} \text{ interaction} \to \mathsf{Regularization} \text{ scheme dependence (both models!)}$

Pure gauge part \rightarrow Polyakov loop potential¹

$$\frac{\mathcal{U}_{G}}{T^{4}} = -\frac{1}{2}a(T)\ell\bar{\ell} + b(T)\ln M_{H}(\ell,\bar{\ell}) + \frac{1}{2}c(T)(\ell^{3}+\bar{\ell}^{3}) + d(T)(\ell\bar{\ell})^{2}$$

Polyakov loop & fluctuations determined from LQCD

$$\mathcal{U}_Q = -2T \int rac{d^3 q}{(2\pi)^3} 2 \ln \left(1 + 3\ell e^{-eta E} + 3\ell e^{-2eta E} + e^{-3eta E}
ight)$$

¹ P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 074502 (2013)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ = の Q · 7/10

Electric mass

$$m_{el}^2 = -rac{1}{2}N_f imes \Pi_{00}(p_0=0,ec{p}
ightarrow 0) = rac{1}{2}N_f imes \int rac{d^3q}{(2\pi)^3} 4eta N_{th}(1-N_{th})$$

 \sim

External magnetic field \rightarrow Landau quantization

$$2\int \frac{d^3p}{(2\pi)^3} \to \frac{|qB|}{2\pi} \sum_{k=0}^{\infty} (2-\delta_{k,0}) \int_{-\infty}^{\infty} \frac{dp_z}{2\pi}$$

$$E_k^2 = m^2 + p_z^2 + 2k|q_f B|,$$

Electric mass (per flavor)

$$\begin{split} m_{el}^2 &= \frac{1}{2} \frac{|q_f B|}{2\pi} \sum_{k=0}^{\infty} (2 - \delta_{k,0}) \int \frac{dq_z}{2\pi} 4\beta N_{th}(E_k) (1 - N_{th}(E_k)) \\ &\approx \frac{1}{2} \frac{|q_f B|}{4\pi} \int \frac{dq_z}{2\pi} \frac{4\beta e^{\beta \sqrt{(q_z)^2 + m^2}}}{(e^{\beta \sqrt{(q_z)^2 + m^2}} + 1)^2}, \qquad |q_f B| \gg T^2 \end{split}$$

Coupling to the Polyakov loop \rightarrow Statistical confinement

- ▶ Pure gluon system → Deconfinement order parameter
- Effective models \rightarrow Accounts for non-preturbative gluon dynamics

$$\begin{split} \mathsf{N}_{th}(E,\mu) \to \mathsf{N}_{th}(E,\ell,\bar{\ell},\mu) &= \frac{\ell e^{-\beta(E-\mu)} + 2\bar{\ell} e^{-2\beta(E-\mu)} + e^{-3\beta(E-\mu)}}{1 + 3\ell e^{-\beta(E-\mu)} + 3\bar{\ell} e^{-2\beta(E-\mu)} + e^{-3\beta(E-\mu)}} \\ &= \begin{cases} \frac{1}{1 + e^{3\beta(E-\mu)}} \,, & \ell = \bar{\ell} = 0 \,, & \text{baryon-like} \\ \frac{1}{1 + e^{\beta(E-\mu)}} \,, & \ell = \bar{\ell} = 1 \,, & \text{quark-like} \end{cases} \end{split}$$

Two additional gap equations

$$rac{\partial}{\partial \ell} \left(\mathcal{U}_{\mathcal{G}} + \mathcal{U}_{Q}
ight) = 0 \qquad rac{\partial}{\partial \overline{\ell}} \left(\mathcal{U}_{\mathcal{G}} + \mathcal{U}_{Q}
ight) = 0$$

- U_G pure gauge potential⁶
- ▶ U_Q quark-gluon interaction

⁶P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D **88**, 074502 (2013) (2013)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ|= のへで 10/10